期刊文献+

近视人群眼反应分析仪检测结果分析 被引量:1

Analysis of ocular response analyzer in myopia eyes
原文传递
导出
摘要 目的研究眼反应分析仪(ORA)测量的角膜生物力学指标角膜滞后量(cornealhystere.sis,CH)和角膜阻力因子(corneal resistance factor,CRF)在近视人群中的测量值以及在不同程度近视患者之间的差异。方法对357例692只眼近视患者,分为轻度近视组(≤-3.00D)、中度近视组(-3.00^-6.00D)、高度近视组(-6.00D^- 10.00D),超高度近视组(≥-10.00D),利用眼反应分析仪测量各组CH、CRF值及超声角膜测厚仪测量中央角膜厚度(central corneal thickness,CCT),并对测量结果进行统计学分析。结果全部患者平均CH值为(10.51±1.54)mmHg(1kPa=7.5mmHg),CRF值为(10.61±1.63)mmHg,平均CCT值(533.24±32.14)p,m。轻、中度近视组CH值与高、超高度近视组比较差异具有统计学意义(P〈0.05),轻、中度近视组CRF值超高度近视组比较差异具有统计学意义(P〈0.05)。各组CCT值对比差异无统计学意义。结论随着近视程度的加深,角膜生物力学特性发生改变,角膜粘滞性及眼球硬度降低。 Objective To investigate the differences of the corneal hysteresis (CH) and the corne- al resistance factor (CRF) among various degrees myopia patients. Methods A total of 357 myopia patients (692 eyes) were divided into mild myopia group (≤ -3.00 D), moderate myopia group (-3.00D to-6.00D), high myopia group (-6.00D to-10.00D) and heavy high myopia group (≥ -10.00D). CH and CRF was measured by ocular response analyzer (ORA) and central corneal thickness (CCT) was detected on the same time. The relationships among these group's parameters were analyzed statistically. Results The average CH value was (10.51±1.54) mmHg in all myopia groups, the average CRF value was (10.61±1.63) mmHg, the average CCT value was (533.244±32.14) g m. Significant differences were between mild myopia, moderate myopia groups and high, heavy high group (P 〈 0.05) for CH value. In terms of the CRF value, there was significant difference among mild myopia, moderate myopia and heavy high myopia. There was no significant difference in CCT value among the groups. Conclusions With the increase of the sphere equivalence, CCT value has no obvious change, but CH and CRF value are decreased.
出处 《中国实用眼科杂志》 CSCD 北大核心 2012年第6期694-697,共4页 Chinese Journal of Practical Ophthalmology
关键词 近视 角膜滞后量 角膜阻力因子 中央角膜厚度 眼反应分析仪 Myopia Corneal hysteresis Corneal resistance factor Central corneal thickness Oc-ular response analyzer
  • 相关文献

参考文献12

  • 1Montard R,Kopito R,Touzeau O,et al.Ocular response analyzer: feasibility study and correlation with normal eyes[J].J Fr Oph- thalmol,2007,30(10) : 978-984. 被引量:1
  • 2Moreno-Montales J,Maldonado MJ,Garcia N,et al.Reproducibili- ty and clinical relevance of the ocular response analyzer in nonoperated eyes: corneal biomechanical and tonometric impli- cations[J].Invest Ophthalmol Vis Sci,2008,49(3): 968-974. 被引量:1
  • 3Kynigopoulos M, Sehlote T, Kotecha A,et al.Repeatability of in- traoeular pressure and corneal biomechanical properties measure- ments by the ocular response analyser[J].Klin Monatsbl Augen- heilkd, 2008,225 (5) : 357-360. 被引量:1
  • 4刘睿,褚仁远,汪琳,周行涛.健康人角膜滞后量和阻力因子量测量值及相关因素分析研究[J].中华眼科杂志,2008,44(8):715-719. 被引量:18
  • 5Sullivan-Mee M,Billingsley SC,Patel AD,et al.Ocular Response Analyzer in Subjects with and without Glaucoma[J].Optom Vis Sci,2008,85(6) : 463-470. 被引量:1
  • 6Ehongo A,De Maertelaer V,Pourjavan S.Effect of topical corne- al anaesthesia on ocular response analyzer parameters: pilot study[J].Int Ophthalmol,2008,11 Epub ahead of print. 被引量:1
  • 7Lu F, Xu S, Qu J, et al.Central corneal thickness and corneal hysteresis during corneal swelling induced by contact lenswear- With eye closure[J].Am J Ophthalmol,2007,143(4) : 616-622. 被引量:1
  • 8Luce DA.Determining in vivo biomechanical properties of the cornea with an ocular response analyzer [J].J Cataract Refract Surg,2005,31(1) : 156-162. 被引量:1
  • 9Kida T, Liu JH, Weinreb RN.Effec t of 24-hour corneal biomechanical changes on intraocular pressure measurement [J].Invest Ophthalmol Vis Sci,2006,47(10) : 4422-4426. 被引量:1
  • 10Wolfs RC,Kalver CC,Vingeding JR,et al.Distribution of central corneal thickness and its association with in traocular pres- sure: The Rotterdam Study [J].Am J Optha lmol, 1997, 123 (6) : 767-772. 被引量:1

二级参考文献13

  • 1Edmund C. Assessment of an elastic model in the pathogenesis of keratoeonus. Acta Ophthalmol, 1987, 65: 545-550. 被引量:1
  • 2Edmund C. Corneal elasticity and ocular rigidity in normal and keratoconic eyes. Acta Ophthalmol, 1988, 66: 134-140. 被引量:1
  • 3Luce DA. Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. J Calaracl Refract Surg, 2005, 31 : 156-162. 被引量:1
  • 4Medeiros FA, Weinreb RN. Evaluation of the influence of corneal biomechanical properties on intraocular pressure measurements using the ocular response analyzer. J Glaucoma, 2006, 15: 364-370. 被引量:1
  • 5Brubaker RF. Tonometry and corneal thickness. Arch Ophthalmol, 1999, 117 : 104-105. 被引量:1
  • 6Brooks AM, Robertson IF, Mahoney AM. Ocular rigidity and intraocular pressure in keratoconus. Aust J Ophthalmnol, 1984, 12 : 317-324. 被引量:1
  • 7Bohm A, Kohlhaas M, Lerche RC, et al. Measuring intraocular pressure in keratoconus. Effect of the changed biomechanics. Ophthalmologe, 1997, 94 : 771-774. 被引量:1
  • 8Friedenwald JS. Contribution to the theory and practice of tonometry. Am J Ophthalmol, 1937, 20: 985-1024. 被引量:1
  • 9Purslow PP, Karwatowski WS. Ocular elasticity. Is engineering stiffness a more useful characterization parameter than ocular rigidity? Ophthahnology, 1996, 103: 1686-1692. 被引量:1
  • 10Pallikaris 1G, Kymionis GD, Ginis HS, et al. Ocular rigidity in living human eyes. Invest Ophthalmol Vis Sci, 2005, 46: 409-414. 被引量:1

共引文献17

同被引文献9

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部