期刊文献+

添加剂DMI对PCPDTBT:PC61BM聚合物薄膜性能的影响 被引量:2

Film-forming Additives Effect on Photoelectric Properties of PCPDTB:TPC_(61)BM System
原文传递
导出
摘要 制备ITO/PEDOT:PSS/PCPDTBT:PC61BM聚合物薄膜,研究了成膜添加剂DMI对ITO/PEDOT:PSS/PCPDTBT:PCBM/A1的聚合物薄膜性能的影响。结果表明,成膜添加剂DMI使PCPDTBT:PCBM光敏层的吸收峰红移,所制备出的太阳能电池的性能得到大幅度提高。DMI使薄膜中产生纳米尺度的两相分离,增大了给体与受体间的界面接触,提高了光生激子的分离效率,增大了电子的迁移率和电极收集载流子的效率,从而提高了器件的性能。在强度为100 mW·cm^(-2)的光照下,太阳能电池的填充因子FF为0.38,能量转换效率η为2.64%,开路电压Voc为0.66 V,短路电流密度Jsc为10.42 mA·cm^(-2)。 The thin film of ITO/PEDOT : PSS/PCPDTBT : PCB1BM were fabricated and the effects of film-forming additives on the photoelectric properties of PCPDTBT: PC61BM were investi- gated. The results show that the film-forming additives results to a red shift of the absorption peak of PCPDTBT: PColBM active layer, substantially improvement of the performance of the solar cell. The existence of film-forming additives can lead to a nanoscale phase separation and increase of the contact interface between the donor and acceptor. The efficiency of photoinduced exciton separation, the carrier mobility and electrode collection charge carrier efficiency can be increased, thereby the device performances can be significantly improved by film-forming additives. Open circuit voltage of 0.66 V, short circuit cur- rent density of 10.42 mA.cm^-2, fill factor of 0.38 and power conversion efficiency (PCE) of 2.64% were achieved under the condition of 100 mW.cm^-2 air-mass 1.5 solar simulator illumination.
作者 王爱芬
出处 《材料研究学报》 EI CAS CSCD 北大核心 2012年第3期327-330,共4页 Chinese Journal of Materials Research
基金 浙江省自然科学基金Y6100273资助项目~~
关键词 有机高分子材料 光电性能 成膜添加剂 光敏层 organic polymer materials, photoelectric properties, film-forming additives, activelayer
  • 相关文献

参考文献19

  • 1H.Hoppe, N.S.Sariciftci, Morphology of polymer/fullerene bulk heterojunction solar cells, Journal of Materials Chemistry, 16, 45(2006). 被引量:1
  • 2D.Muhlbacher, M.Scharber, M.Morana, Z.Zhu, D.Waller, R.Gaudiana, C.Brabec, High photovoltaic performance of a low-bandgappolymer, Advanced Materials, 18, 2884(2006). 被引量:1
  • 3M.Morana, M.Wegscheider, A.Bonanni, N.Kopidakis, S.E.Shaheen, M.Scharber, Z.Zhu, D.Waller, R.Gaudiana, C.Brabec, Bipolar charge transport in PCPDTBT-PCBM bulk-heterojunctions for photovoltaic applications, Ad- vanced Functional Materials, 18, 17"57(2008). 被引量:1
  • 4X.N.Yang, J.Loos, S.C.Veenstra, Nanoscale morphology of high-performance polymer solar cells, Nano Letters, 5, 579(2005). 被引量:1
  • 5W.L.Ma, C.Y.Yang, X.Gong, K.Lee, A.J.Heeger, Ther- mally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology, Adv. Fnct. Mater., 15, 1617(2005). 被引量:1
  • 6G.Li, V.Shrotriya, J.S.Huang, High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends, Nature Materials, 4, 864(2005). 被引量:1
  • 7G.Li, Y.Yao, H.Yang, V.Shrotriya, G.Yang, Y.Yang, "Solvent annealing" effect in polymer solar cells based on poly(3-hexylthiophene) and methanofullerenes, Adv. Funct. Mater., 17, 1636(2007). 被引量:1
  • 8Zhao Y, Xie ZY, Qu Y, Geng YH, Wang LX, Solvent-vapor treatment induced performance enhancement of poly(3- hexylthiophene): methanofullerene bulk-heterojunction photovoltaic cells, Appl Phys Lett., 90, 043504(2005). 被引量:1
  • 9D.Muhlbacher, M.Scharber, M.Morana, High photovoltaic performance of a low-bandgap polymer, Advanced Mate- rials, 18, 2884(2006). 被引量:1
  • 10F.C.Chen, H.C.Tseng, C.J.Ko, Solvent mixtures for im- proving device efficiency of polymer photovoltaic devices, Appl. Phys. Lett., 92, 103316(2008). 被引量:1

同被引文献3

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部