期刊文献+

修正的Black-Scholes模型下的欧式期权定价 被引量:9

European pricing options on modified Black-Scholes model
下载PDF
导出
摘要 通常情况下,期权定价研究都假定股票价格的波动率和期望收益率为常数.假定波动率和期望收益率为股票价格的一般函数.利用金融市场复制策略及布朗运动的Ito公式,得到欧式未定权益的一般Black-Scholes偏微分方程,并通过求解偏微分方程获得欧式期权定价公式. Previous option pricing research typically assumes that the stock volatility and expectation return rate are constant during the life of the option.In this study,we assume the stock volatility and expectation return rate in our option valuation model are function of stock.By the self-financing strategy and Ito formula for Brownian motion,the general Black-Scholes partial differential equations for European claim and pricing formula for European option are obtained.
出处 《高校应用数学学报(A辑)》 CSCD 北大核心 2012年第1期23-32,共10页 Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金 国家自然科学基金(70471057 71171164) 西北工业大学博士论文创新基金(C201235) 西北工业大学研究生种子基金(Z2011073)
关键词 布朗运动 期权定价 修正的Black-Scholes模型 Brownian motion option pricing modified Black-Scholes model
  • 相关文献

参考文献10

  • 1Sun Yudong, Shi Yimin. A new method for European option pricing with two stocks[J]. Physical Sciences, 2010, 14: 165-171. 被引量:1
  • 2薛红,孙玉东.分数跳-扩散过程下亚式期权定价模型[J].工程数学学报,2010,27(6):1009-1014. 被引量:16
  • 3高长林,易法槐.美式利率期权定价的抛物型变分不等式[J].高校应用数学学报(A辑),2008,23(1):13-22. 被引量:1
  • 4Cox J, Ross S A. The valuation of options for alternative stochastic processes[J]. Financial Economics, 1976, 3 (1): 145-166. 被引量:1
  • 5Cox J C, Ross S A, Rubinstein M. Option pricing: a simplified approach[J]. Finance Eco- nomics, 1979, 6(3): 229-263. 被引量:1
  • 6Su Y L, Lin T I, Lee C F. Constant elasticity of variance(CEV) option pricing model: integration and detailed derivation[J], mathematics and coputers in simulation, 2008, 79(1): 60-70. 被引量:1
  • 7Chen R R, Lee C F. A constant elasticity of variance (CEV) family of stock price distributions in option pricing: review and integration[J]. Financial Study, 1993, 1: 25-51. 被引量:1
  • 8Emanuel D, MacBethJ . Further results on the constant elasticity of variance call option pricing formula[J]. Financial. Quantitative Analysis, 1982, 17(1): 533-554. 被引量:1
  • 9Campbell J. Stock Returns and the Term Structure[J]. Financial Economics, 1987, 18(2): 373-399. 被引量:1
  • 10Feller W. Two singular diffusion problems[J]. Annals of Mathematics, 1951, 54: 173-182. 被引量:1

二级参考文献18

  • 1罗庆红,杨向群.几何型亚式期权的定价研究[J].湖南文理学院学报(自然科学版),2007,19(1):5-7. 被引量:11
  • 2[1]Wilmott P,Dewynne J,Howison S.Option Pricing[M].Oxford:Oxford Financial Press,1993. 被引量:1
  • 3[2]Black F,Scholes M.The pricing of options and corporate liabilities[J].J Political Economy,1973,81:637-659. 被引量:1
  • 4[3]Friedman A.Variational Principles and Free Boundary Problems[M].New York:Wiley,1982. 被引量:1
  • 5[5]Alobaidi G,Mallier R.Interest rate options close to expiry[J].Journal of Mathematics,2004,40:13-40. 被引量:1
  • 6[6]Vasicek O A.An equilibrium characterization of the term structure[J].J Financial Eco-nomics,1977,5:177-188. 被引量:1
  • 7[7]Chen Ren-Raw,Scott L.Pricing interest rate options in a two-factor Cox-lngersoU-Ross model of the term structure[J].Review of Financial Studies,1992,5:613-636. 被引量:1
  • 8[8]Cox John C,Ingersoll Jonathan E Jr,Ross Stephen A.A theory of the term structure of interest rates[J].Econometrica,1985,53:385-407. 被引量:1
  • 9[9]Hull J.Options,Futures and Other Derivatives[M].Fourth Edition,Englewood Cliffs,New Jersey:Prentice Hall,2000. 被引量:1
  • 10[10]Zvan R,Forsyth P A,Vetzal K R.Penalty methods for American options with stochastic volatility[J].J Comput Appl Math,1998,91:199-218. 被引量:1

共引文献15

同被引文献105

引证文献9

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部