期刊文献+

一维半线性色散耗散波动方程的紧致差分格式 被引量:1

Compact difference scheme for one-dimensional semi-linear dispersion dissipation wave equation
原文传递
导出
摘要 作者对一维半线性色散耗散波动方程建立了一类紧致差分格式,讨论了差分解的存在唯一性,分析了该格式的收敛性、稳定性,得到了收敛阶为O(τ~2+h^4).数值试验验证了方法的有效性. A compact difference scheme method is constructed for onedimensional semilinear dispersion dissipation wave equation. Existence and uniqueness of the solution of difference scheme are proven. It is proven that the compact difference scheme is convergent in the order of O(τ^2+h^4) and stable. A numerical example showing stability and convergence is given.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第3期521-524,共4页 Journal of Sichuan University(Natural Science Edition)
关键词 色散耗散波动方程 半线性 紧致差分格式 稳定性 收敛性 dispersion dissipation wave equation semilinear compact difference scheme stability convergence
  • 相关文献

参考文献12

二级参考文献63

共引文献79

同被引文献14

  • 1Rosenau P.A quasrcontinuous description of a non- linear transmission line[J].Physical Scripta,1986,34:827. 被引量:1
  • 2Rosenau P,Dynamics of dense discrete systems[J],Progress of Theoretical Physics,1988,79:1028. 被引量:1
  • 3Park M A.On the Rosenau equation[J].Applied Mathematics and Computation,1990,9(2):145. 被引量:1
  • 4Chung S K,Ha S N.Finite element Galerkin solu- tion for the Rosenau equation[J].Applicable Analy- sis,1994,54(1-2):39. 被引量:1
  • 5Omrani K,Abidi F,Achouri F,Khiari N.A new conservative finite difference scheme for the Rosenau equation[J].Applied Mathematics and Computa- tion,2008,201(1-2):35. 被引量:1
  • 6Chung S K,Pani A K.Numerical methods for the Rosenau equation [J].Applicable Analysis,2001,77(3-4):351. 被引量:1
  • 7Zuo J M.Solitons and periodic solutions for the Rosenau-KdV and Rosenau-Kawahara equations[J].Applied Mathematics and Computation,2009,215(2):835. 被引量:1
  • 8Labidi M,Biswas A.Application of He's principles to Rosenau-Kawahara equation [J].Mathematics in Engineering,Science and Aerospace ( MESA),2009,2(2).183. 被引量:1
  • 9Biswas A,Triki H,Labidi M.Bright and dark soli- tons of the Rosenau Kawahara equation with power law nonlinearity [J].Physics of Wave Phenomena,2011,19(1):24. 被引量:1
  • 10Hu JS,Xu Y C,Hu B,Xie X P.Two conservative difference schemes for Rosenau-Kawahara equation [J].Advances in Mathematical Physics,2014:Ar- ticle ID 217393. 被引量:1

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部