期刊文献+

基于节点吸引力的点权有限BBV模型研究 被引量:2

Research on BBV Mode with Limited Node Strength Based on Node Attraction
下载PDF
导出
摘要 在点权有限网络模型的基础上,增加考虑了节点吸引力因素,构造了一种全新的、符合实际的加权复杂网络演化模型。研究发现,该模型与BBV模型相比,节点的强度概率密度分布是有变化的,而且更符合实际网络。通过调节相关属性参数,可以使网络达到更优化的状态,对实际网络的演化进行指导,减轻网络负荷,增强网络性能,具有一定的实际意义。 Considering the node attraction,a new and realistic weighted evolving complex network model was proposed based on the network model with limited node strength.Through the research it is found that the distribution of node strength of this model is changed and it’s more realistic in the network comparing with BBV model.By adjusting the parameters of the relevant property that a more optimal state of the network can be gained.It can guide the evolution of the actual network,reduce the network’s load and enhance its performance.Therefore,this study has some practical significance.
出处 《系统仿真学报》 CAS CSCD 北大核心 2012年第6期1293-1297,共5页 Journal of System Simulation
基金 国家自然科学基金(60873194)
关键词 BBV模型 吸引因子 点权有限 幂律分布 BBV model attractive factor limited node strength power-law distribution
  • 相关文献

参考文献12

  • 1R Pastor-Satorras, A Vespignani. Evolution and Structure of the Internet: A Statistical Physics Approach [M]. Cambridge, England, Cambridge University Press, 2007. 被引量:1
  • 2R Albert, A Barabasi, H Jeong. Diameter of the World-Wide Web [J]. Nature (S0028-0836), 1999, 401(9): 130-131. 被引量:1
  • 3A Barrat, M Barth61emy, R Pastor-Satorras, A Vespignani. The Architecture of Complex Weighted Networks [J]. Proc Natl Acad Sci (S0027-8424), 2004, 101(11): 3747-3752. 被引量:1
  • 4M E 3 Newman. Scientific Collaboration Networks II Shortest Paths, Weighted Networks and Centrality [J]. Phys Rev E (S1539-3755), 2001, 64(016132): 1-7. 被引量:1
  • 5P Erd6s, A R6nyi. On the Evolution of Random Graphs [J]. Publ Math Inst Hung Acad Sci., 1960, 5(1): 17-61. 被引量:1
  • 6D J Watts, S H Strogatz. Collective Dynamics of 'small world' Networks [J]. Nature (S0028-0836), 1998, 393(6684): 409-410. 被引量:1
  • 7M E J Newman, D J Watts. Renormalization Group Analysis of the Small-world Network Model [J]. Phys Lett A (S0375-9601), 1999, 263(4): 341-346. 被引量:1
  • 8A L Barab~i, R Albert. Emergence of Scaling in Random Networks [J]. Science (S0036-8075), 1999, 286(5439): 509-512. 被引量:1
  • 9A Bah'at, M Barth61emy, A Vespignani. Modeling the Evolution of Weighted Networks [J]. Plays Rev E (S! 539-3755), 2004, 70(066149): 1-13. 被引量:1
  • 10A Barrat, M Barth61emy, A Vespignani. Weighted Evolving Networks: Coupling Topology and Weights Dynamics [J]. Phys Rev Lett (S0031-9007), 2004, 92(228701): 1-4. 被引量:1

二级参考文献20

  • 1Albert R, Barabasi A L. Emergence of Scaling in Random Networks[J]. Science, 1999, 286(5439): 509-512. 被引量:1
  • 2Albert R, Jeong H. Mean-field Theory for Scale-free Random Networks[J]. Physica A: Statistical Mechanics and Its Applications, 1999, 272(1/2): 173-187. 被引量:1
  • 3Li Xiang, Chen Guanrong. A Local-world Evolving Network Model[J]. Physica A: Statistical Mechanics and Its Applications, 2003, 328(1/2): 274-286. 被引量:1
  • 4Jeong H, N6da Z. Measuring Preferential Attachment in Evolving Networks[J]. Europhys. Lett., 2003, 61(4): 567-572. 被引量:1
  • 5Dorogovtsev S N, Mendes J F. Structure of Growing Networks with Preferential Linking[J]. Phys. Rev. Lea., 2000, 85(21): 4633-4636. 被引量:1
  • 6[1]Newman M E J.The structure and function of complex networks[J].SIAM Review,2003,45(2):167-256. 被引量:1
  • 7[2]Erdos P,Renyi A.On random graphs[J].Publ Math,1959,6:290-297. 被引量:1
  • 8[3]Watts D J,Strogatz S H.Collective dynamics of small-world networks[J].Nature,1998,393:440-442. 被引量:1
  • 9[4]Barabasi A L,Albert R,Jeong H.Mean-field theory for scale-free random networks[J].Physica A,1999,272:173-187. 被引量:1
  • 10[5]Barrat A,Barthelemy M,Pastor-Satorras R,et al.The architecture of complex weighted networks[J].PNAS,2004,101:3 747-3 752. 被引量:1

共引文献23

同被引文献21

  • 1刘兵.Web数据挖掘[M].北京:清华大学出版社,2009. 被引量:26
  • 2施少怀. 一种基于用户倾向的微博好友推荐算法[D]. 哈尔滨: 哈尔滨工业大学, 2013. 被引量:2
  • 3Pan Z, Li X, Wang X. Generalized local-world models for weighted networks.[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2006, 73(5):88-101. 被引量:1
  • 4Kahanda I, Neville J. Using Transactional Information to Predict Link Strength in Online Social Networks[J]. ICWSM, 2009, ( 9 ) : 74-81. 被引量:1
  • 5Xiang R, Neville J, Rogati M. Modeling relationship strength in online social networks[C]//Proceedings of the 19th international conference on World wide web. ACM,Harbin : 2010:981-990. 被引量:1
  • 6Silva N B, Tsang I R, Cavalcanti G D C, et al. A graph-based friend recommendation system using genetic algorithm[C]//Evolutionary Computation (CEC), 2010 IEEE Congress on. IEEE, 2010: 1-7. 被引量:1
  • 7Liben-Nowell D, KleinbergJ. The link-prediction problem for social networks[J]. Journal of the American society for information science and technology, 2007, 58(7): 1019-1031. 被引量:1
  • 8Al Hasan M, Zaki M J. A survey of link prediction in social networks[M]. Social network data analytics. Springer US, 2011: 243-275. 被引量:1
  • 9Lichtenwalter R N, Lussier J T, Chawla N V. New perspectives and methods in link prediction[C]//Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, Harbin :2010: 243-252. 被引量:1
  • 10Sarukkai R R. Link prediction and path analysis using Markov chains[J]. Computer Networks, 2000, 33(1): 377-386. 被引量:1

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部