期刊文献+

基于支持向量机方法的森林火险预测研究 被引量:14

Forest Fire Prediction Based on Support Vector Machine
下载PDF
导出
摘要 以利用气象数据预测森林火险等级为目的,使用半正定规划建模选定支持向量机的最优核函数,依据500余条林火数据建立了支持向量回归机模型,并使用回归误差特征曲线图对比分析各个回归模型的学习效果。分析得到该自定义核函数的均方误差为1.76,支持向量数为190,约占训练数据集的1/2。结果表明,与传统的线性回归方法及基于高斯核的支持向量机相比,该预测模型具有较高的准确率并且有效的避免了过学习的现象。 The support vector machine (SVM) was employed to predict the burned area of forest fires, to build the optimal kernel, and the semi-definite programming was used when solving the SVM problem. Also, the regression error characteristic curves were provided to illustrate the accuracy difference between the classic regression model as well as the SVM model based on gauss kernel. The experience had the result of 1.76 of the mean square error and 190 of the support vector number, approximately a half of the training number, which showed that the model had a relatively high accuracy compared to the classic regression method and a prevailing kernel. The result also indicated that the method effectively avoided the over-learning phenomenon and that it was useful for improving firefighting resource management.
出处 《中国农学通报》 CSCD 2012年第13期126-131,共6页 Chinese Agricultural Science Bulletin
关键词 森林火险预测 半定规划 支持向量回归机 回归误差特征曲线图(REC) forest fire prediction semi-definite programming (SDP) support vector machine (SVM) regression error characteristic curves (REC)
  • 相关文献

参考文献15

二级参考文献65

共引文献171

同被引文献208

引证文献14

二级引证文献81

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部