期刊文献+

图的邻点可区别VE-全色数的一个上界

An Upper Bound for the Adjacent Vertex-Distinguishing VE-Total Chromatic Number of a Graph
原文传递
导出
摘要 根据图的邻点可区别VE-全染色的定义和性质,用概率方法研究了图的邻点可区别VE-全染色,并给出了图的邻点可区别VE-全色数的一个上界.如果δ≥7且△≥25,则有x_(at)^(ue)(G)≤7△,其中δ是图G的最小度,△是图G的最大度. According to the definition and properties of the adjacent vertex-distinguishing VE-total coloring,the adjacent vertex-distinguishing VE-total coloring by the probability method is studied and the upper bound of the adjacent vertex-distinguishing VE-total chromatic number is obtained.Ifδ≥7 and△≥25,thenχat^ve{G)≤7A is proved,where 6 is the minimum degree of G,and△is' the maximum degree of G.
出处 《数学的实践与认识》 CSCD 北大核心 2012年第10期151-155,共5页 Mathematics in Practice and Theory
基金 甘肃省自然科学基金(3ZS051-A25-025) 甘肃省教育厅横向基金(0501-03)
关键词 概率方法 邻点可区别VE-全染色 邻点可区别VE-全色数 Lovasz局部 引理 probability method adjacent vertex-distinguishing VE-total coloring adjacent vertex-distinguishing VE-total chromatic number Lovasz Local Lemma
  • 相关文献

参考文献10

二级参考文献25

  • 1ZHANG Zhongfu, CHEN Xiang’en, LI Jingwen, YAO Bing, LU Xinzhong & WANG Jianfang College of Mathematics and Information Science, Northwest Normal University, Lanzhou 730070, China,Department of Computer, Lanzhou Normal College, Lanzhou 730070, China,Institute of Applied Mathematics, Lanzhou Jiaotong University, Lanzhou 730070, China,College of Information and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China,Institute of Applied Mathematics, Chinese Academy of Sciences, Beijing 100080, China.On adjacent-vertex-distinguishing total coloring of graphs[J].Science China Mathematics,2005,48(3):289-299. 被引量:175
  • 2张忠辅,陈祥恩,李敬文,姚兵,吕新忠,王建方.关于图的邻点可区别全染色[J].中国科学(A辑),2004,34(5):574-583. 被引量:192
  • 3陈祥恩,张忠辅,晏静之,张贵仓.关于几类特殊图的Mycielski图的邻点可区别全色数(英文)[J].兰州大学学报(自然科学版),2005,41(2):117-122. 被引量:13
  • 4Alon N, Sadakov B., Zaks A. Acyclic Edge Colorings of Graphs. Journal of Graph Theory, 37:157-167 (2001) 被引量:1
  • 5Balister, P.N.,Bollobas, B., Shelp, R.H. Vertex distinguishing colorings of graphs with A(G) = 2. Discrete Mathematics, 252:17 -29 (2002) 被引量:1
  • 6Bazgan, C., Harkat-Benhamdine, A., Li, H., Wozniak, M. On the vertex-distinguishing proper edge-coloring of graphs. J. Combin. Theory (Series B), 75:288-301 (1999) 被引量:1
  • 7Bondy, J.A., Murty, U.S.R. Graph Theory with applications. The Macmillan Press Ltd, 1976 被引量:1
  • 8Burris, A.C., Schelp, R.H. Vertex-distinguishing proper edge-colorings. J. of Graph Theory, 26:73-82 (1997) 被引量:1
  • 9Chartrand, G., Lesniak-Foster, L. Graph and Digraphs, Ind. Edition. Wadsworth Brooks/Cole, Monterey, CA, 1986 被引量:1
  • 10Favaron, O., Li, H., Schelp, R.H. Strong edge coloring of graphs. Discrete Math., 159:103- 109 (1996) 被引量:1

共引文献208

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部