期刊文献+

基于改进SIFT算法的粒子滤波目标跟踪 被引量:1

Particle Filtering Object Tracking Based on Improved SIFT Algorithm
下载PDF
导出
摘要 为解决传统尺度不变特征变换(SIFT)算法在光照变化和遮挡的情况下,不能快速准确跟踪目标的问题,提出一种采用粒子滤波和SIFT建立目标模型的方法,利用粒子滤波预测目标在当前帧中可能的位置。计算目标可能存在的区域SIFT特征点,构建特征描述向量,进行目标匹配。根据目标模型和目标候选区域中SIFT特征点的匹配情况,在跟踪过程中更新特征描述向量,实现目标跟踪。实验结果证明,该算法可提高目标检测和跟踪的速度以及准确性。 In the case of illumination varies and shelter,the traditional algorithm can not track the targets fast and precisely.In order to solve the problem,a new method is proposed for target tracking,in which particle filtering is used to establish the target motion model and Scale Invariable Feature Transformation(SIFT) feature is introduced to create the target model.The possible position of the target in the current frame is predicted by particle filtering.The SIFT feature points of the possible area are calculated and the characteristics description vector is built to match the target.According to the matching result of the target model and the SIFT feature points of the target candidate region,the characterization vector is updated in the tracking process.Experimental results show that the proposed algorithm can improve the speed and accuracy of the target detection and tracking significantly.
出处 《计算机工程》 CAS CSCD 2012年第10期14-17,共4页 Computer Engineering
关键词 尺度不变特征变换 粒子滤波 模型更新 目标跟踪 搜索策略 特征描述向量 Scale Invariable Feature Transformation(SIFT) particle filtering model update object tracking search strategy characterizationvector
  • 相关文献

参考文献10

  • 1Takala V,Pietikainen M. Multi-object Tracking Using Color,Texture and Motion[A].Piscataway,USA:IEEE Press,2007.1-7. 被引量:1
  • 2Li P H,Wang H J. Object Tracking with Particle Filter Using Color Informatinn[A].Berlin:Springer-Verlag,2007.534-541. 被引量:1
  • 3Zhou Huiyi,Yuan Yuan,Zhang Yi. Non-rigid Object Tracking in Complex Scenes[J].Pattern Recognition Letters,2009,(02):98-102. 被引量:1
  • 4Moravec H P. Towards Automatic Visual Obstacle Avoidance[A].Cambridge,USA:William Kaufmann,1977. 被引量:1
  • 5Harris C G,Stephens M J. A Combined Corner and Edge Detector[A].Manchester,UK,1988.147-151. 被引量:1
  • 6Stephen M,Michael J. A New Approach to Low-level Image Processing[J].International Journal of Computer Vision,1997,(01):45-78. 被引量:1
  • 7Lowe D G. Distinctive Image Features from Scale-invariant Keypoints[J].International Journal of Computer Vision,2004,(02):91-110. 被引量:1
  • 8Sanjecv M. A Tutorial on Particle Filters for Online Nonlinear/NonGaussian Bayesian Tracking[J].IEEE Transactions on Signal Processing,2002,(02):174-188. 被引量:1
  • 9明安龙,马华东.多摄像机之间基于区域SIFT描述子的目标匹配[J].计算机学报,2008,31(4):650-661. 被引量:27
  • 10王法胜,赵清杰.一种用于解决非线性滤波问题的新型粒子滤波算法[J].计算机学报,2008,31(2):346-352. 被引量:37

二级参考文献45

  • 1侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:255
  • 2代科学,李国辉,涂丹,袁见.监控视频运动目标检测减背景技术的研究现状和展望[J].中国图象图形学报,2006,11(7):919-927. 被引量:169
  • 3Deng Xiao-Long, Xie Jian-Ying, Guo Wei-Zhong. Bayesian target tracking based on particle filter. Journal of Systems Engineering and Electronics, 2005, 16(3) : 545-549 被引量:1
  • 4Chang Cheng, Ansari Rashid. Kernel particle filter for visual tracking. IEEE Signal Processing Letters, 2005, 12(3): 242-245 被引量:1
  • 5Gustafsson F, Gunnarsson F et al. Particle filters for positioning, navigation and tracking. IEEE Transactions on Signal Processing, 2002, 50(2): 425-437 被引量:1
  • 6Kalsson Rickard. Particle filtering for positioning and tracking applications [Ph. D. dissertation]. Department of Electrical Engineering, Linkopings Universitet, 2005 被引量:1
  • 7Fox D, Hightower J, Liao L, Schulz D, Borriello G. Bayesian filtering for location estimation. IEEE Pervasive Computing, 2003, 2(3):24-33 被引量:1
  • 8Rekleitis I M. A particle filter tutorial for mobile robot localization. Montreal, Quebec, Canada: Centre for Intelligent Machines, McGill University: Technical Report TM-CIM- 04-02, 2004 被引量:1
  • 9Thrun S, Fox D, Burgard W, Dellaert F. Robust monte carlo localization for mobile robots. Artificial Intelligence, 2001, 128(1-2): 99-141 被引量:1
  • 10Kwok C, Fox D, Meila M. Real-time particle filters. Proceedings of the IEEE, 2004, 92(3): 469-484 被引量:1

共引文献62

同被引文献15

  • 1Wren C, Azarhayejani A, Darrell T, et al. Pfinder: real- time tracking of the human body[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997,19(7) :780 - 785. 被引量:1
  • 2SHeikkilgM, Pietikinen M. A texture - based method for modeling the background and detecting moving objects [J].IEEE Transactions on Pattern Analysis and Machine Intelli- gence,2006,28(4) :657 - 662. 被引量:1
  • 3Alzoubi Hussein,Pan W David. Efficient global motion esti- mation using fixed and random subsampling patterns[C]// Proceedings of the International Conference on Image Pro- cessing(IPIC). San Antonio,USA,2007, Vol. 1 : 477 - 480. 被引量:1
  • 4Eberhart R C, Kennedy J. Particles swarm optimization[C]// IEEE International Conference on Neural Network, Perth, Australia, 1995, Vol. 4 : 1942 - 1948. 被引量:1
  • 5Wang Xue, Ma Jun - Jie, Wang Sheng, et al. Distributed Particle Swarm Optimization and Simulated Annealing for Energy- efficient Coverage in Wireless Sensor Networks [J]. Sensors,2007,7(5):628-648. 被引量:1
  • 6Shengli Song, Li Kong, Pu Zhang, et al. Particle Swarm Optimization Algorithm Based on Space Mutation and its Application[C]//ISA 2009. International Workshop on In- telligent Systems and Applications, 2009:1 -4. 被引量:1
  • 7Martin S R, Newman A J. The application of particle swarm optimization and maneuver automatons during non- Markovian motion planning for air vehicles performing ground target search [C]//IEEE/RSJ International Confer- ence on Intelligent Robots and Systems, 2008(IROS 2008), 2008:2605 - 2610. 被引量:1
  • 8Czyz J,Ristic B, Macq B. A particle filter for joint detection and tracking of color objeets[J]. Image Vision Computing , 2007,25(8) :1271 - 1281. 被引量:1
  • 9Eberhart R C,Shi Y. Guest editorial special -is sue on par ticle swarm optimization [J]. IEEE Trans. Action on Evo lutionary Computation, 2004, 8(3) : 201 - 203. 被引量:1
  • 10赵鹏,沈庭芝,单宝堂.一种基于粒子滤波的无人机电视导引系统目标跟踪算法[J].光学精密工程,2008,16(1):134-140. 被引量:16

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部