期刊文献+

过滤特征基因选择及演化硬件急性白血病分型 被引量:1

Molecular Classification of Acute Leukemia Using EHW with Filter-Based Gene Selection
下载PDF
导出
摘要 提出一种基于虚拟可重构结构的内部演化硬件癌症分子分型方法.为有效处理DNA微阵列数据和便于硬件实现,对比研究了5种基于过滤模式的信息基因选择方法.演化硬件通过系统学习和系统分类两个阶段对经过特征选择的信息基因进行处理.对急性白血病数据集的实验结果表明,基于信噪比信息基因选择方法的演化硬件分类器识别率最高.演化硬件具有和其他传统模式识别方法可比的识别率,识别时间仅需0.12μs. A virtual reconfigurable architecture-based intrinsic evolvable hardware (EHW) is proposed for the molecular classification of cancer. To efficiently process DNA microarray datasets and cooperate with the hardware realization of EHW, five different filter-based gene selection methods are compared and discussed in this paper. The EHW classification system handles the selected informative genes through two stages: system learning and system classification. Empirical studies on a human acute leukemia dataset demonstrate that classification accuracy of the gene selection scheme based on signal-to-noise ratio outperforms its competitors. Classification accuracy of the proposed EHW is high comparable with other state-of-the-art pattern recognition methods. The system recognition time is reduced to 0.12μs.
出处 《应用科学学报》 EI CAS CSCD 北大核心 2012年第3期287-293,共7页 Journal of Applied Sciences
基金 国家自然科学基金(No.61075019) 重庆市自然科学基金(No.2009BB2080) 教育部留学回国人员科研启动基金(教外司留[No.2010]1174) 重庆邮电大学科研基金(No.A2009-06)资助
关键词 模式识别 演化硬件 特征选择 虚拟可重构结构 微阵列 分子分型 pattern recognition, evolvable hardware, feature selection, virtual reconfigurable architecture,microarray, molecular classification
  • 相关文献

参考文献5

二级参考文献77

共引文献23

同被引文献18

  • 1GOLUB T R,SLONIM D K,TAMAYO P,et al. Molecular classification of cancer: class discovery and class predic- tion by gene expression monitoring [ J ]. Science, 1999, 286(5439) : 531-537. 被引量:1
  • 2ALON U,BARKAI N, NOTFERMAN D, et al. Broad pat- terns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays [ J ]. Proceedings of the National Academy of Sci- ences, 1999,96(12) : 6745-6750. 被引量:1
  • 3LU C, DEVOS A, SUYKENS J, et al. Bagging linear sparse bayesian learning models for variable selection in cancer diagnosis information technology in biomedicine [ J ]. IEEE Transactions on Information Technology in Bi- omedicine ,2007,11 ( 3 ) : 338-347. 被引量:1
  • 4CHO S B, WON H. Cancer classification using ensemble of neural networks with multiple significant gene subsets [ J]. Applied Intelligence ,2007,26( 3 ) : 243-250. 被引量:1
  • 5HELAMN P, VEROFE R, ATLAS S R,et al. A bayesian network classification methodology for gene expression data [ J ]. Journal of Computational Biology, 2004,11 ( 4 ) : 581-615. 被引量:1
  • 6LIU K H, XU C G. A genetic programming-based ap- proach to the classification of muhiclass microarray data- sets [ J ]. Bioinformatics ,2009,25 ( 3 ) : 331-337. 被引量:1
  • 7WANG L,ZHU J,ZOU H. Hybrid huberized support vec- tor machines for microarray classification and gene selec- tion [ J ]. Bioinformatics,2008,24(3) : 412-419. 被引量:1
  • 8ZHANG B T. Hypernetworks: A molecular evolutionary ar- chitecture for cognitive learning and memory [ J ]. IEEE Comoutational Intelligence Magazine ,2008,3 ( 3 ) : 49-63,. 被引量:1
  • 9LEE J H, LEE B, KIM J S, et al. A molecular evolutionary algorithm for learning hypernetworks on simulated DNA computers [ C ]//Proceedings of the IEEE Congress on Evolutionary Computation. New Orleans : IEEE Press, 2011 : 2845-2852. 被引量:1
  • 10LEE J H, LEE S H,CHUNG W H,et al. A DNA assembly model of sentence generation [ J ]. BioSystems, 2011,106 : 51-56. 被引量:1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部