期刊文献+

基于信息修正GM(1,1)模型的黄金价格行情预测 被引量:2

Prediction of gold price quotation based on information revision GM(1,1) model
下载PDF
导出
摘要 为了科学预测黄金的价格行情,构建信息修正GM(1,1)模型来模拟其价格走势。首先对2011年国内黄金价格(Au9999)进行分析,选出波动较大的少量数据,再用信息修正GM(1,1)模型进行动态预测,最后将模拟结果与传统的GM(1,1)模型进行误差分析,并将预测结果与2012年1月、2月数据进行对比分析。结果表明信息修正GM(1,1)模型能减少随机扰动和驱动因素,其模拟和预测的精度较高,结果可靠。 In order to make the scientific prediction on gold price, the information revision GM(1,1) model is constructed to simulate the price trend. Firstly, the domestic gold (Au9999) price in 2011 is analyzed and a few data which have great fluctuation are selected. Secondly, the information revision GM(1,1) model is established to simu- late the gold price and predict the trend. Finally, the error comparative analysis is made with the traditional GM(1, 1) model, and the prediction results are compared with the data of January and February in 2012. The results show that the information revision GM(1,1) model can reduce the factors of random disturbance, the simulation and pre- diction accuracy are relatively high, and the analysis results are reliable.
作者 涂小龙
出处 《有色金属(矿山部分)》 2012年第3期11-14,共4页 NONFERROUS METALS(Mining Section)
基金 国家自然科学基金(50774092) 全国优秀博士论文专项资金项目(200449)
关键词 信息修正GM(1 1)模型 价格行情 预测 误差分析 information revision GM(1,1) model price quotation prediction error analysis
  • 相关文献

参考文献12

  • 1王祖伟,李兆江.世界黄金价格变动特点及未来趋势[J].黄金,2000,21(2):54-57. 被引量:6
  • 2Ramos J L M,Expósito A G,Santos J M R. Influence of ANN-based market price forecasting uncertainty on optimal bidding[A].Spain:Sevilla,2002. 被引量:1
  • 3Rodriguez C P,Anders G J. Energy price forecasting in the Ontario competitive power system market[J].IEEE Transactions on Power Systems,2004,(01):366-374.doi:10.1109/TPWRS.2003.821470. 被引量:1
  • 4Szkuta B R,Sanabria L A,Dillon T S. Electridty price shortterm forecasting using artificial neural networks[J].IEEE Transactions on Power Systems,1999,(03):851-857.doi:10.1109/59.780895. 被引量:1
  • 5Alida Troncoso Lora,Jesús M.Riquelme Santos,Antonio Gómez Expósito. Electricity Market Price Forecasting Based on Weighted Nearest Neighbors Techniques[J].IEEE Transactions on Power Systems,2007,(03):1297-1330. 被引量:1
  • 6Shiva Shakiba,Mehdi Piltan,Seyed Farid Ghaderi. Short-term Electricity Price Forecasting in Deregulated Markets Using Artificial Neural Network[A].Malaysia:Kuala Lumpur,2011.378-384. 被引量:1
  • 7曾濂,马丹頔,刘宗鑫.基于BP神经网络改进的黄金价格预测[J].计算机仿真,2010,27(9):200-203. 被引量:18
  • 8张坤,郁湧,李彤.小波神经网络在黄金价格预测中的应用[J].计算机工程与应用,2010,46(27):224-226. 被引量:22
  • 9邓聚龙.灰理论基础[M]武汉:华中科技大学出版社,2002. 被引量:1
  • 10邓聚龙.灰色系统基本方法[M]武汉:华中科技大学出版社,2005. 被引量:1

二级参考文献23

  • 1S.Haykin著,叶世伟,史忠植译,神经网络原理[M].北京:机械工业出版社,2004. 被引量:2
  • 2E E Peters.Fractal market analysis:applying chaos theory to investment and economics[M].New York:John Wiley﹠Sons,1996.39-50. 被引量:1
  • 3M Rast.Forecasting financial time series with fuzzy neural network[J].IEEE,1997,1(Oct):28-31. 被引量:1
  • 4D S Poskitt,A R Tremayne.The Selection and Use of Linear and Bilinear Time Series Model[J].International Journal of Forecasting.1986,2:101-114. 被引量:1
  • 5Serletis M shintani.No evidence of chaos but some evidence of dependence in the US stock market[J].Chaos Solitons and Fractals.17,2003.449-454. 被引量:1
  • 6Holger Kantz,Thomas Schreiber.Nonlinear time series analysis[M].Cambridge University Press,1997. 被引量:1
  • 7J B Kruskal.Toward a practical method which helps uncover the structure of a set of multivariate observations by finding the linear transformation which optimizes a new index of condensation[M].Milton R C.Nelder J A.(eds)Statistical Computation.New York:Academic Press,1969.427-440. 被引量:1
  • 8J H Friedman,J W Tukey.A projection pursuit algorithm for exploratory data analysis[J].IEEE Transaction on Computer,PartC,1974,23(9):881-890. 被引量:1
  • 9Sharda R,Patil R B.A connectionist approach to time series prediction:An empirical test[J].Journal of Intelligent Manufacturing,1992,3(1):317-323. 被引量:1
  • 10Hornik K,Stinchcombe M,Whiter H.Mutilayer feedforward networks are universal approximators[J].Neural Networks,1989(2):359-366. 被引量:1

共引文献41

同被引文献16

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部