期刊文献+

风力机翼型全流向气动特性估算 被引量:2

PREDICTION OF THE AERODYNAMIC CHARACTERISTIC OF WIND TURBINE AIRFOILS THROUGH ±180° ANGLE OF ATTACK
下载PDF
导出
摘要 利用经验公式、小攻角下翼型气动特性数据建立了翼型在-180°~180°攻角范围内的气动特性估算模型。以NACA0012翼型、NACA0015翼型为例,对翼型全流向范围的升力系数、阻力系数、力矩系数进行了估算,并对风力机翼型DU96-W-180的升力系数、阻力系数进行了估算,将估算结果与实验结果进行比较,验证了估算方法的合理性。 A estimation model was built to predict the aerodynamic characteristics of airfoils through ± 180° angle of attack. The lift coefficients, drag coefficients, moment coefficients of full range section were estimated for NACA0012 airfoil, NACA0015 airfoil and DU96-W-180 airfoil. Comparisons between the model predictions and experiment data showed that the estimation model is reasonable.
出处 《太阳能学报》 EI CAS CSCD 北大核心 2012年第5期717-722,共6页 Acta Energiae Solaris Sinica
基金 国家高技术研究发展(863)计划(2007AA05Z448)
关键词 翼型 风力机 全流向 估算 气动特性 airfoil wind turbine full range section estimate aerodynamic characteristic
  • 相关文献

参考文献5

  • 1Bj(O)rn Montgomerie. Methods for root effects,tip effects and extending the angle of attack range to ± 180°,with application to aerodynamics for blades on wind turbines and prollers[FOI-R-1305-SE][R].ISSN,1942. 被引量:1
  • 2Hoemer S F,Borst H V. Fluid dynamic lift[M].Midland Park,New Jersey,1965. 被引量:1
  • 3Martinez Jaime,Bernabini Luca,Probst Oliver. An improved BEM model for the power curve prediction of stallregulated wind turbines[J].Wind Energy,2005,(04):385-402. 被引量:1
  • 4Sheldahl Robert E,Klimas Paul C. Aerodynamic characteristics of seven symmetrical airfoil sections through 180°angle of attack for use in aerodynamic analysis of vertical axis wind turbines[SAND-80-2114][R].Sandia National Laboratories,1981. 被引量:1
  • 5Ruud van Rooij,Nando Timmer. Design of airfoils for wind turbine blades[R].Airfoil Design UDT Presentation,2004. 被引量:1

同被引文献24

  • 1刘雄,陈严,叶枝全.遗传算法在风力机风轮叶片优化设计中的应用[J].太阳能学报,2006,27(2):180-185. 被引量:29
  • 2Glauert H. Aerodynamic theory [ M ]. Berlin: Heidelberg Springer, 1935, 169--360. 被引量:1
  • 3Wilson R E, Lissaman P B S, Walker S N. Aerodynamic performance of wind turbines [ M]. Corvallis, Oregon- Oregon State University, 1976. 被引量:1
  • 4Bavanish B, Thyagarajan K. Optimization of power coefficient on a horizontal axis wind turbine using bem theory[J]. Renewable and Sustainable Energy Reviews, 2013, 26: 169--182. 被引量:1
  • 5Fischer G R, Kipouros T, Savill A M. Multi-objective optimisation of horizontal axis wind turbine structure and energy production using aerofoil and blade properties as design variables[J]. Renewable Energy, 2014, 62: 506---515. 被引量:1
  • 6Vese] R W Jr, McNamara J J. Performance enhancement and load reduction of a 5 MW wind turbine blade[J]. Renewable Energy, 2014, 66: 391--401. 被引量:1
  • 7Griffin D A. WindPACT turbine design scaling studies technical area 1-Composite blades for 80-to 120-meter rotor [ R]. Technical report, National Renewable Energy Laboratory, NREL/SR-500-29492, Golden, CO. A. 2.1, 2001. 被引量:1
  • 8Viterna L A, Corrigan R D. Fixed pitch rotor performance of large horizontal axis wind turbines [J]. Large Horizontal-Axis Wind Turbines, 1982, 1: 69-- 85. 被引量:1
  • 9Holland J H. Adaption in natural and artificial systems [M]. Cambridge, MA, USA: MIT Press, 1975. 被引量:1
  • 10de Jong Kenneth. Learning with genetic algorithms: An overview [J]. Machine learning, 1988, 3 (2-3) : 121-- 138. 被引量:1

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部