期刊文献+

BP神经网络和遗传算法用于曲轴填充性能的优化设计 被引量:4

BP neural network and genetic algorithm for the filling properties optimization of crankshaft
下载PDF
导出
摘要 针对曲轴空间分模模具存在的深型腔难填充结构,提出了采用楔形飞边槽结构改善填充性能的方法。基于MATLAB平台,将BP人工神经网络与遗传算法应用于楔形飞边槽结构参数优化设计。首先利用正交试验设计安排试验样本,对所得的样本进行有限元模拟,获得各方案坯料的最小未填充距离,作为BP神经网络训练的导师信号。再结合遗传算法,以最小未填充距离为目标,得到楔形飞边槽结构的最优参数。最后通过数值模拟验证并比较遗传算法预测结果与数值模拟结果的误差。结果表明,误差在5%以内。将优化参数应用于实际生产,坯料能够完全充满模具型腔,材料利用率由75.7%提高到81.4%,验证了楔形飞边槽结构优化设计的正确性。 The structure of wedge flash is proposed to improve the filling properties for deep-cavity structure of crankshaft die with dimensional splitting mold. BP genetic algorithm is applied to optimize the structure parameters of wedge flash based on Matlab. Samples which are selected by orthogonal test are analyzed via FEM, and the minimum unfilled distance obtained are employed to conduct the BP neural network training. Then the optimum parameters with minimum unfilled distance are gained from genetic algorithm. Error between the parameters predicted and the results get from simulations is less than 5%. The productive practice indicates that the cavity is fully filled and the material utilization ratio increases from 75.7% to 81.4%, which confirms the correctness of optimization of wedge flash structure.
出处 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第5期52-56,共5页 Journal of Chongqing University
基金 重庆市自然科学基金重点资助项目(CSTC2009BA4065)
关键词 曲轴 楔形飞边槽 神经网络 遗传算法 crankshaft wedge flash neural network genetic algorithm
  • 相关文献

参考文献4

二级参考文献6

共引文献26

同被引文献43

  • 1汪学阳,王华君,王华昌,李亚敏,汪小凯.基于FEM的热锻模磨损分析与寿命预测[J].润滑与密封,2008,33(5):49-53. 被引量:11
  • 2江爱朋,邵之江,方学毅,郑小青,钱积新.基于有限存储的简约空间序列二次规划算法研究[J].电路与系统学报,2007,12(5):108-114. 被引量:1
  • 3Fu Z M,Mo J H,Chen L. Using genetic algorithm-back propagation neural network prediction and finite- element model simulation to optimize the process of multiple-step incremental air-bending forming of sheet metal [J]. Materials and Design,2010,31(1):267-277. 被引量:1
  • 4Hsiang S H, Ho H L. Application of finite element method and artificial neural network to the die design of radial forging processes [J]. The International Journal of Advanced Manufacturing Technology, 2004, 24(9/10) : 700-707. 被引量:1
  • 5Chan W I., Fu M W, Lu J. An integrated FEM and ANN methodology for metal formed product design[J]. Engineering Applications of Artificial Intelligence, 2008,21(8) :1170-1181. 被引量:1
  • 6Kim D J,Kim B M. Application of neural network and FEM for metal forming process [J]. International Journal of Machine Tools & Manufacture,2000,40(6) :911-925. 被引量:1
  • 7Zienkiewiez O C,Cambell J C. Shape optimization and Sequential linear programming in optimum structural design [M]. New York:Tohn Wiley,1973. 被引量:1
  • 8Wahl R, Schneider J,Gumbsch P. Influence of the real geometry of the protrusions in micro textured surfaces on frictional behavior [J]. Tribology Letters, 2012,47(3):447- 453. 被引量:1
  • 9ZHAO Yiping. Increasing service life of die for hot die forging[J]. Forging & Stamping Technology, 2000, 25(6) :43-47. 被引量:1
  • 10Lee R S,JouJ L. Application of numerical simulation for wear analysis of warm forging die [J]. Journal of Materials Processing Technology, 2003, 140 ( 1/2/3 ) : 43-48. 被引量:1

引证文献4

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部