期刊文献+

格上时滞Lotka-Volterra合作系统的波前解 被引量:2

Traveling Wave Fronts of Delayed Lotka-Volterra System on Lattice
原文传递
导出
摘要 研究了定义在格上并具有时滞的Lotka-Volterra合作系统的波前解.通过构造上下解得到了波前解的存在性,借助于比较原理和渐近传播理论得到了波前解的不存在性,进而在得到了波前解最小波速的充分条件. This paper is concerned with the traveling wave fronts of delayed Lotka-Volterra system on lattice. The existence of traveling wave fronts is established by constructing upper- lower solutions and the nonexistence of traveling wave fronts is proved by the theory of asymptotic spreading with comparison principle, which imply some sufficient conditions on the minimal wave speed.
作者 朱福国
出处 《生物数学学报》 CSCD 2012年第1期150-156,共7页 Journal of Biomathematics
基金 甘肃省自然科学基金(096RJZA051)资助项目
关键词 比较原理 波前解 渐近传播 Comparison principle Traveling wavefronts Asymptotic spreading
  • 相关文献

参考文献4

二级参考文献53

  • 1丁玮,韩茂安.具时滞的人口模型的行波解(英文)[J].生物数学学报,2005,20(1):11-16. 被引量:11
  • 2Ye Q X,Li Z Y. Introduction to Reaction-Diffusion Equations[M]. Beijing: science press, 1990. 被引量:1
  • 3王明新.抛物型方程的初边值间题[M].北京;科学出版社,1993. 被引量:1
  • 4Murray J D. Mathematical Biology H Spatial Models and Biomedical Applications[M]. Berlin:Springer-Verlag, 1990. 被引量:1
  • 5Dunbar S.Traveling wave solutions of diffusive Lotka-Volterra equations[J].Journal of Mathematical Biology, 1983, 17: 11-32. 被引量:1
  • 6Dunbar S. Traveling wave solutions of diffusive Lotka-Volterra equations: A heteroclinic connection in R4[J]. Transactions of the American Mathematical Society, 1984, 286: 557-594. 被引量:1
  • 7Dunbar S.Traveling waves in diffusive predator-prey equations: periodic orbits and point-to periodic hete- roclinic orbits[J].SIAM Journal on Applied Mathematics, 1986, 46: 1057-1078. 被引量:1
  • 8Volpert A. Traveling Wave Solutions of Parabolic Systems[M]. New York: American Mathematical Society, 1994. 被引量:1
  • 9Owen, M R, Lewis, M A. How predation can slow, stop or reverse a prey invasion[J].Bulletin of Mathematical Biology , 2001, 63: 655-684. 被引量:1
  • 10Jianhua Huang, Gang Lu, Shigui Ruan. Existence of traveling wave solutions in a diffusive predator-prey model[J]. Journal of Mathematical Biology, 2003, 46: 132-152. 被引量:1

共引文献14

同被引文献18

  • 1Boumenir A, Nguyen V M. Perron theorem in the monotone iteration method for traveling waves in delayedreaction-diffusion equations[J]. J. Differential Equations, 2008, 244(7):1551-1570. 被引量:1
  • 2Conley C, Gardner R, An application of the generalized Morse index to traveling wave solutions of a com-petitive reaction-diffusion model[J]. Indiana Univ. Math. J, 1984, (3):319-343. 被引量:1
  • 3Dunbar S R. Traveling wave solutions of diffusive Lotka-Volterra equations [J]. J. Math. Biol, 1983, 17(1):11-32. 被引量:1
  • 4Dunbar S R. Traveling wave solutions of diffusive Lotka-Volterra equations: A hetero-clinic connection inR4 [J]. Trans. Amer. Math. Soc, 1984, 286(2):557-594. 被引量:1
  • 5Gardner R. Existence of traveling wave solutions of predator-prey systems via the connection index[J]. SIAMJ. Appl. Math, 1984, (1):56-79. 被引量:1
  • 6Gardner R. Existence and stability of traveling wave solutions of competition models: A degree theoretic:approach [J]. J. Differential Equations, 1982, (3):343-364. 被引量:1
  • 7Kanel Ya. I. Existence of a travelling wave solution of the Belousov-Zhabotinskii system[J]. Diifer. Uravn,1990, 26(4):652-666. 被引量:1
  • 8Ya A. Kapel. Existence of travelling-wave type solutions for the Belousov-Zhabotinskii system equations[J].Sibirsk. Math. Zh, 1991, 32(3):47-59. 被引量:1
  • 9Lin Z G, Pedersen M, Tian C R. Traveling wave solutions for reaction diffusion systemsfJ]. Nonlinear Anal.2010,73(10):3303-3313. 被引量:1
  • 10Ma S. Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem[J]. J. DifferentialEquations, 2001, 171(2):294-314. 被引量:1

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部