期刊文献+

非线性偏最小二乘回归法在均匀设计响应面法中的应用 被引量:6

Application of Non-linear Partial Least Squares Regression Method to Response Surface Method with Uniform Design
原文传递
导出
摘要 针对目前多维变量可靠度分析中广泛应用的均匀设计响应面法(RSM),指出了使用最小二乘(LS)法拟合拟线性回归模型时存在的局限性,并提出采用拟线性偏最小二乘(PLS)法来回归响应面系数。由于拟线性回归法限制了模型的形式,精度提高有限,结果也很不稳定,因此又提出用基于样条变换的偏最小二乘回归模型代替拟线性回归模型并用于结构失效概率的计算,既能处理最小二乘法无法解决的变量间多重相关性的问题,又能避开拟线性回归中预先对模型形式的假定。通过算例验证了基于样条变换的偏最小二乘法的适用性和有效性,尤其对于多维变量非线性程度较高的可靠度分析,与普通最小二乘法拟合的响应面相比,其模型更加精确,失效概率精度更高。 The response surface method (RSM) with uniform design is widely used for current structural reliability analysis of multi-dimensional variables. However, it has the limitation of fitting the regression models in the original quasi-linear least squares (LS) method. To deal with this limitation, a new approach--the partial least squares (PLS) method based on the traditional method is proposed for improvement. However, the quasi-linear regression method restricts the form of the mod- el, thus the improvement in accuracy is limited and the result is unstable. So, this paper presents a partial least squares re- gression model to substitute the quasi-linear model for the calculation of reliability, which not only handles the correlation be- tween the variables but also avoids the pre-assumptions for the form of the regression model. The results of several examples show that the method proposed in this paper can be used effectively to analyze structural reliability, especially in multidimensional and non-linear cases, and higher accuracy can be obtained as shown by comparing the results with those from the least squares regression method.
作者 赵威 王伟
出处 《航空学报》 EI CAS CSCD 北大核心 2012年第5期839-847,共9页 Acta Aeronautica et Astronautica Sinica
关键词 偏最小二乘法 响应面法 样条变换 均匀设计 结构可靠度 partial least squares method response surface method spline transform uniform design structural reliability
  • 相关文献

参考文献24

  • 1赵国藩编著..工程结构可靠度[M].北京:水利电力出版社,1984:273.
  • 2贡金鑫,陈晓宝,赵国藩.结构可靠度计算的Gauss-Hermite积分方法[J].上海交通大学学报,2002,36(11):1625-1629. 被引量:8
  • 3RubinStein R Y, Krosese D P. Simulation and the Monte Carlo method. New York: John Wiley & Sons, 2008. 被引量:1
  • 4Haldar A, Mahadevan S. Reliability assessment using stochastic finite element analysis. New York: John & Wiley Sons, 2000: 197-262. 被引量:1
  • 5彭泽.结构可靠度Metamodel方法及其工程应用研究.长沙:中南大学资源与安全工程学院,2010. 被引量:1
  • 6Rackwitz R. Reliability analysis--a review and some perspectives. Structural Safety, 2001, 23(4): 365-395. 被引量:1
  • 7Bucher C G, Bourgund U. A fast and efficient response surface approach for structural reliability problems. Structural Safety, 1990, 7(1). 57-66. 被引量:1
  • 8Faravelli L. Response-surface approach for reliability analysis. Journal of Engineering Mechanics, 1989, 115(12): 2763-2781. 被引量:1
  • 9Kim S H, Na S W. Response surface method using vector projected sampling points. Structural Safety, 1997, 19 (1) :3-19. 被引量:1
  • 10Kaymaz L, McMahon C A. A response surface method based on weighted regression for structural reliability analysis. Probabilistic Engineering Mechanics, 2005, 20(1):11-17. 被引量:1

二级参考文献46

共引文献73

同被引文献90

引证文献6

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部