期刊文献+

基于复数小波的相位自适应医学图像信号融合

Phase-adaptive Medical Image Signal Fusion Based on Complex Wavelet
下载PDF
导出
摘要 小波变换具有方向选择性、正交性、可变的时频分辨率、可调整的局部和分析数据量小等优良特性,这些特性使得小波变换成为图像融合的强有力的工具和手段。本文采用复数小波融合医学图像信息,从而提高对图像的感性认识。该方法引入与基于医学图像信号相位特征相适应的加权图像信号集合体,运用图像信号的相位特征自适应地增强每幅图像信号间的信号融合过程中重要的解剖和功能特征。实验表明,与非适应性图像信号的融合方法相比较,该方法可有效改善解剖和功能特征视觉。 Wavelet transform is of fine features,such as orientation selectivity,orthogonal,variable time-frequency resolution,adjustable amount of local support and a small amount of analysis data,these features make wavelet transform become a powerful tool and means of image fusion.This paper adopts the integration of medical complex wavelet image information,so as to improve the perceptual knowledge way for image.This method introduces the collection of weighted image signal adaptive to medical image signal phase characteristic,uses the image signal phase characteristics to adaptively enhance important anatomical and functional features during the procedure of image signal fusion.Experiments show that,compared with the non-adaptive image signal fusion method,the method effectively improves the anatomy and functional features vision.
作者 肖健 陈一明
出处 《计算机与现代化》 2012年第5期42-44,共3页 Computer and Modernization
关键词 复数小波 相位自适应 图像融合 complex wavelets phase-adaptive image fusion
  • 相关文献

参考文献14

  • 1Xue Z, Blum R S. Concealed weapon detection using color image fusion [ C ]//Proceedings of the Sixth International Conference on Information Fusion. 2003,1:622-627. 被引量:1
  • 2Able Software Corporation. 3-D Doctor [ EB/OL ]. http :// www. ablesw, com/3d-doctor/index, html, 2011-11-28. 被引量:1
  • 3Blum R S. Robust image fusion using a statistical signal processing approach [ J ]. Information Fusion, 2005,6 ( 2 ) : 119-128. 被引量:1
  • 4Liu G, Jing Z, Sum S. Image fusion based on an expecta- tion maximization algorithm [ J ]. Optical Engineering, 2005,44(7). 被引量:1
  • 5Qu Guihong, Zhang Dali, Yan Pingfan. Medical image fu- sion by wavelet transform modulus maxima [ J ]. Opt. Ex- press, 2001,9(4) : 184-190. 被引量:1
  • 6Garg S, Kiran K, Mohan R, et al. Mtcltilevel medical image fiasion using segmented image by level set evolution with re- tfon competition [- C ]//IEEE EMBS. 2005:7680-7683. 被引量:1
  • 7Wong A, Bishop W. Efficient least squares fusion of MRI and CT images using a phase congruency model [ J ]. Pat- tern Recognition Letters, 2008,29(3) : 173-180. 被引量:1
  • 8Morrone M C, Burr D C. Feature detection in human vi- sion: A phase-dependent energy model [ C ]//Proc. the Royal Society of London. Series B, Biological Sciences. 1988,235 (1280) :221-245. 被引量:1
  • 9Kovesi P. Phase congnlency detects corners and edges [ C]//Australian Pattern Recognition Society Conference. 2003 : 309 -318. 被引量:1
  • 10Wang Z, Simoncelli E P. Local phase coherence and the perception of blur[ C]//Advances in Neural Information Processing Systems. 2004,16:786-792. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部