期刊文献+

不同棒束结构稠密栅元通道内的湍流CFD研究 被引量:5

CFD Simulation on Turbulent Flow in Tight Lattice Fuel Assemblies
下载PDF
导出
摘要 采用URANS(Unsteady Reynolds Averaged Navier Stokes)方法对不同棒束结构稠密栅元通道(P/D=1.001~1.2)内的湍流流动进行CFD模拟。研究分析了不同Re(Re=5 000~215 000)的湍流流动的主流速度、壁面剪应力、湍动能等参数。研究表明:在较稠密的棒束(P/D<1.1)通道内,P/D的变化对子通道内主流速度和剪应力分布均有较大影响。本文的模拟结果也验证了在达到临界P/D前(即使δ/D<0.011),交混因子Y和δ/D成反比关系。对于固定的棒束结构(P/D=1.062),当Re达到一定值(Re=9 600)时,子通道内主流速度和剪应力分布对Re的变化不敏感。 In this paper,URANS(Unsteady Reynolds Averaged Navier Stokes) methodology was applied to the prediction of turbulent flow inside tight lattice rod bundles with different P/D ratios,i.e.from 1.001 to 1.2.The turbulent flow with Reynolds number ranging from 5 000 to 215 000 was investigated by analysing the bulk velocity,wall shear stress and turbulent intensity distributions in the subchannel.The results show significant effect of P/D on stream wise velocity and wall shear stress in very tight lattice(P/D1.1).The results also indicate that the mixing factor(Y) has an inverse proportion relation to δ/D,even though δ/D is smaller than 0.011.When Reynolds number reaches certain value in tight lattice,the bulk velocity and wall shear stress are less sensitive to Reynolds number.
出处 《原子能科学技术》 EI CAS CSCD 北大核心 2012年第4期396-403,共8页 Atomic Energy Science and Technology
基金 国家自然科学基金资助项目(50806044) 国家重点基础研究发展计划资助项目(2007CB209804)
关键词 稠密栅元 URANS 流动振动 相干结构 tight lattice URANS flow oscillation coherent structure
  • 相关文献

参考文献22

  • 1OLDEKOP W, BERGER H D, ZEGGEL W. General features of advanced pressurized water reactors with improved fuel utilization[J]. Nu- clear Technology, 1982, 59(2): 212-227. 被引量:1
  • 2UCHIKAWA S, OKUBO T. Investigations on innovative water reactor for flexible fuel cycle ( LFWR ) [ C] /// Proceedings of GLOBAL. Tsukuba, Japan: [s. n. ], 2005. 被引量:1
  • 3CHENG X, LIU X J, YANG Y H. A mixed core for supercritical water-cooled reactors[J]. Nuclear Engineering and Technology, 2008, 40 (1) : 1-10. 被引量:1
  • 4KRAUSS T, MEYER T. Experimental investi- gation of turbulent transport of momentum and energy in a heated rod bundle[J]. Nuclear Engi- neering and Design, 1998, 180(3):185-206. 被引量:1
  • 5TRUPP A C, AZAD R S. The structure of tur bulent flow in triangular array rod bundles[J]. Nuclear Engineering and Design, 1975, 32 (1) : 47-84. 被引量:1
  • 6TRIPPE G, WEINBERG D. Non-isotropic eddy viscosities in turbulent flow through rod bundles [C]// KAKAC S, SPALDING D B. Turbulent Forced Convection in Channels and Bundles. Washington: Hemisphere Publishing Corpora- tion, 1979. 被引量:1
  • 7SEALE W J. Turbulent diffusion of heat be- tween connected flow passages[J]. Nuclear En- gineering and Design, 1979, 54(2): 183-195. 被引量:1
  • 8REHME K. Simple method of predicting friction factors of turbulent flow in non-circular channels [J]. International Journal of Heat and Mass Transfer, 1973, 16(5): 933-950. 被引量:1
  • 9REHME K. The structure of turbulent flow through rod bundles[J]. Nuclear Engineering and Design, 1987, 99(1): 141-154. 被引量:1
  • 10MERZARI E, NINOKATA H. Large eddy sim- ulation of the vortex street between rectangular channels[C]/// Nuclear Thermal Hydraulics and Safety. Korea: [s. n. ], 2006. 被引量:1

同被引文献30

  • 1YEXIN Ouwen. Experimental and Numerical Investiga-tion on Unsteady Flow Behavior in Tight Lattice [D].Shanghai: Shanghai Jiao Tong University, 2012. 被引量:1
  • 2Hu Gaojie, Yu Lei, Zhang Yangwei. Numerical Simulationof Quasi Periodic Large Scale Vortices in Rod BundlesWith Non-uniform Wall Roughness [C]// Proceedings ofthe 21th International Conference on Nuclear Engineer-ing. Cheng’du, China: ICONE21, 2013: 15202. 被引量:1
  • 3Chang, D, Tavoularis, S. Numerical Simulations of Devel-oping Flow and Vortex Street in a Rectangular Channelwith a Cylindrical Core [J]. Nuclear Engineering and De-sign, 2012, 243: 176-199. 被引量:1
  • 4Chang D, Tavoularis S. Unsteady Numerical Simulationsof Turbulence and Coherent Structures in Axial Flow Neara Narrow Gap [J]. ASME Journal of Fluids Engineering,2005,127: 458-466. 被引量:1
  • 5Xiao Hongguang, Zhang Yangwei, Yan Binghuo. Numeri-cal Study on the Influence of Non-uniform Wall Roughnesson Vortex Structure in Sparse Lattice [C]// Proceedingsof the 21th International Conference on Nuclear Engineer-ing. Cheng’du, China: ICONE21, 2013: 15194. 被引量:1
  • 6Yan B H, Yu L. URANS Simulation of the Turbulent Flowin a Tight Lattice: Effect of the Pitch to Diameter Ratio[J]. Progress in Nuclear Energy, 2011, 53: 428-437. 被引量:1
  • 7Krauss T, Meyer L. Experimental Investigation of Turbu-lent Transport of Momentum and Energy in a Heated RodBundle [J]. Nuclear Engineering and Design, 1998, 180(3):185-206. 被引量:1
  • 8Meyer L. From Discovery to Recognition of Periodic LargeScale Vortices in Rod Bundles as Source of Natural Mix-ing Between Subchannels-a review [J]. Nuclear Engineer-ing and Design, 2010, 240: 1575-1588. 被引量:1
  • 9Chi Y L, Chang H S, Wang K I. Effect of Gap Widthon Turbulent Mixing of Parallel Flow in a Square Chan-nel with a Cylindrical Rod [J]. Experimental Thermal andFluid Science, 2013,47: 98-107. 被引量:1
  • 10GU Hanyang YU Yiqi CHENG Xu LIU Xiaojing.Numerical analysis of thermal-hydraulic behavior of supercritical water in vertical upward/downward flow channels[J].Nuclear Science and Techniques,2008,19(3):178-186. 被引量:5

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部