期刊文献+

使用三个数域的数域筛算法

The number field sieve with three number fields
下载PDF
导出
摘要 大整数分解难题是RSA密码的数学安全基础。目前数域筛算法是分解365比特以上大整数的最有效方法,然而它的时间复杂度仍然是亚指数的。对于目前普遍使用的1024比特以上大整数,数域筛算法还不能分解,所以研究数域筛算法具有重要的意义。现有的一般数域筛算法普遍使用两个数域,对多个数域的研究极少。一般数域筛算法经过修改可以使用三个数域,即两个代数数域和一个有理数域。分析表明:修改后的数域筛算法与原来的一般数域筛算法在时间复杂度上处于同一量级。但修改后的数域筛算法有更多地方可以合并计算,所以计算速度更快了。通过两个实验也验证了这一结论。 The mathematical security of the RSA cryptosystem is based on the problem of factoring large integers.At present,the number field sieve is the most efficient algorithm known for factoring integers larger than 365 bits,while its time complexity is still sub-exponential.Integers larger than 1024 bits,which are widely used in RSA cryptosystem,cannot be factored by means of the number field sieve.So it is significant to study the number field sieve.Now,the general number field sieve often uses two number fields,while multiple number fields are seldom considered.The general number field sieve,through adaptation,can use three number fields,i.e.two algebraic number fields and one rational number field.Analysis shows that the time complexity of the modified number field sieve and the general number field sieve are at the same level.However,the modified number field sieve can combine more computation,so it can save more time in practice.Finally,the result is verified by two experiments.
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2012年第2期1-5,共5页 Journal of National University of Defense Technology
基金 教育部博士点专项基金项目(200802480019)
关键词 公钥密码 RSA密码 整数分解 数域筛算法 public key cryptography RSA cryptosystem integer factorization number field sieve algorithm
  • 相关文献

参考文献15

  • 1Rivest R, Shamir A, Adleman L. A method for obtaining digital signatures and public key cryptosystems [ J ]. Communications of the ACM, 1978, 21 (2) : 120 - 126. 被引量:1
  • 2Denny T, Dodson B, Lenstra A K, et al. On the factorization of RSA-120 [ C]// Proc of Crypto 93, LNCS 773, Springer- Verlag, 1993 : 166 - 74. 被引量:1
  • 3Cavallar S, Dodson B, Lenstra A, et al. Factorization of RSA- 140 using the number field sieve [ C ]//Proc of Asiaerypt'99, LNCS 1716,Springer-Vedag, 1999 : 195 - 207. 被引量:1
  • 4Cavallar S, Dodson B, Lenstra A, et al. Factorization of a 512-bit RSA modulus [ C ]// Proc of Eurocrypt 2000, LNCS 1807, Springer-Vedag, 2000 : 1 - 17. 被引量:1
  • 5Kleinjung T, Aoki K, Franke J, et al. Factorization of a 768- bit RSA Modulus [ C]// Proc of Crypto 2010, LNCS 6223, Springer-Verlag, 2010 : 333 - 350. 被引量:1
  • 6Michael M A, Brillhart J. A method of factoring and the factorization of F7 [ J ]. Math. Comp. ,1975,29 (129) : 183 - 205. 被引量:1
  • 7Lenstra H W. Factoring integers with elliptic curves [ J ]. Ann. Math. , 1987, 126 (3) : 649 -673. 被引量:1
  • 8Pomerance C. Analysis and comparison of some integer factoring algorithms [ R ]. Computational Methods in Number Theory, Part I, Math. Centre Tract 154, Amsterdam, 1982: 89 - 139. 被引量:1
  • 9Lenstra A K, Lenstra H W, Manasse M S, et al. The number field sieve [ C ]//Proc of STOC, 1990 : 564 - 572. 被引量:1
  • 10Lenstra A K, Lenstra H W, Manasse M S, et al. The factorization of the ninth fermat number [ J ]. Math. Comp. , 1993, 61:319 -349. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部