期刊文献+

基于区间有限元的吊梁非概率可靠性研究及敏感性分析 被引量:4

Non-probabilistic reliability research and sensitivity analysis of hanging beam based on interval finite element method
下载PDF
导出
摘要 为了满足吊梁可靠性设计的要求,需要考虑设计参数的不确定性对结构响应的影响。首先结合区间有限元法,对吊梁的不确定性用区间进行描述,建立有限元控制方程,针对控制方程中系数存在不确定性,利用一阶泰勒展开法对其进行求解,获得结构响应区间;其次,分析吊梁的可靠性验算,建立不同失效模式下的极限状态函数,基于非概率可靠性计算方法,得到吊梁的非概率可靠性指标;最后,对区间敏感因子进行定义,分析设计参数在区间内变化对结构响应的敏感程度,通过实例验证。研究结果表明:本文方法的合理性与可行性,并具有一定的工程参考价值。 In order to meet the reliability design requirements of hanging beam,the uncertainty of design parameters was considered on the structural response.First,combining the interval finite element method,the uncertainty on the hanging beam was described by the interval,and then a finite element equation may be established.Because of the uncertainty of the coefficient in the equation,the finite element equations can be solved by the first order Taylor expansion method,and then a range of structural response was obtained.Secondly,the limit state functions in different failure modes were established by analyzing the reliability of hanging beam,and based on non-probabilistic reliability method,the non-probabilistic reliability index may be calculated.Finally,the sensitivity between fluctuation of the design parameters and structural response was analyzed by the interval sensitive factors that were defined.The results show that the proposed method is reasonable and reliable.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第5期1746-1752,共7页 Journal of Central South University:Science and Technology
基金 教育部留学回国人员科研启动基金资助项目(外教司2009-2) 河北省自然科学基金资助项目(E2009001395)
关键词 区间有限元 非概率可靠性 吊梁 敏感性分析 泰勒展开 interval finite element non-probabilistic reliability hanging beam sensitivity analysis Taylor expand.
  • 相关文献

参考文献19

二级参考文献111

共引文献186

同被引文献32

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部