期刊文献+

WZ方法与一类由含参变量积分所定义的函数的定积分计算 被引量:2

WZ Method and the Calculation for Definite Integrals of Functions Defined by Integrals with Parameters
下载PDF
导出
摘要 讨论了如何使用连续的WZ方法的有关结果来计算一类由含参变量积分所定义的函数g(x)=∫b(x)a(x)F(x,y)dy的定积分∫bag(x)dx(a与b可为有限数,也可为无穷),由此为计算一类累次积分提供了一种完全崭新的方法,这是一种完全算法化的方法. The calculating problem for the definite integrals such as∫^bag(x) dx is studied, where g(x) =∫^b(x)a(x)F(x,y) dy is defined by integrals with parameters. Using some results of continuous WZ method, where a and b may befinite or infinite, a completely new method for calculating a kind of iterated integrals, which is an algorithmic meth-od, is obtained.
作者 陈奕俊
出处 《华南师范大学学报(自然科学版)》 CAS 北大核心 2012年第2期40-45,共6页 Journal of South China Normal University(Natural Science Edition)
关键词 WZ方法 含参变量积分 定积分 WZ -method definite integral with parameters definite integral
  • 相关文献

参考文献11

二级参考文献41

  • 1陈奕俊.WZ方法、积分表示与一类组合和的渐近估计问题[J].华南师范大学学报(自然科学版),2004,36(3):29-36. 被引量:4
  • 2WILF H S, ZEILBERGER D. Rational functions certify combinatorial identifies[ J ]. J of Amer Math Soc, 1990, 3 : 147 - 158. 被引量:1
  • 3PETKOVSEK M, WILF H S, ZEILBERGER D. A = B [M]. Massachusetts:A K Peters,1996. 被引量:1
  • 4GESSEL I. Finding identities with the WZ method[J]. J of Symbolic Computation , 1995,70:537 - 566. 被引量:1
  • 5ZEILBERGER D. Closed form ( pun intended ! ) [ J ].Contemporary Mathematics , 1993,143:579 - 607. 被引量:1
  • 6AMDEBERHAN T. Faster and faster convergent series for ξ(3) [J]. Elect J of Combin, 1996,3 :#R13. 被引量:1
  • 7AMDEBERHAN T, ZEILBERGER D. Hypergeometric series acceleration via the WZ method [ J ]. Elect J of Combin , 1997,4 :#R3. 被引量:1
  • 8GUILLERA J. Some binomial series obtained by the WZ method[J]. Advances in Applied Mathematics, 2002, 29:599 - 603. 被引量:1
  • 9GUILLERA J. Generators of some Ramanujan formulas [J]. The Ramanujan Journal ,2006,1:41 -48. 被引量:1
  • 10WILF H S. Accelerated series for universal constants by WZ method[J]. J of Discrete Mathematics and Theoretical Computer Science , 1999,3 : 189 - 192. 被引量:1

共引文献5

同被引文献13

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部