期刊文献+

向量优化问题的一类高阶对偶

Higher order duality in vector optimization
下载PDF
导出
摘要 Meetu在文献[1]中介绍了高阶锥凸、高阶(强)锥伪凸和高阶拟凸.本文在其研究的基础上,考虑目标函数是高阶锥伪凸、约束函数是高阶锥拟凸的情况,并给出弱极小、极小的充分性条件.此外,在高阶广义凸性的假设下,建立了一类高阶对偶模型的弱对偶和强对偶结果. introduced minimum, Higher order cone convex, pseudo convex, strongly pseudo convex and quasiconvex functions are by Meetu [ 1 ]. In the paper, higher order sufficient optimality conditions are given for a weak minimum solution of a vector optimization problem under which an objective function is higher or-der cone pseudo convex and a constraint function is higher order cone quasiconvex. Moreover, weak and strong duality theorems are established for (HD) under these new generalized convexity assumptions.
作者 杨瑞华
出处 《重庆文理学院学报(自然科学版)》 2012年第2期5-8,共4页 Journal of Chongqing University of Arts and Sciences
基金 国家自然科学基金资助项目(11171363)
关键词 向量优化 高阶锥伪凸 高阶锥拟凸 高阶对偶 vector optimization higher order cone pseudo convex higher order cone quasiconvex higher order duality
  • 相关文献

参考文献15

  • 1Meetu Bhatia. Higher order duality in vector optimization over cones [ J/OL ]. Optim Lett. Published Online, 2010. 被引量:1
  • 2Mangasarian 0 L. Second and higher duality in nonlinear programming[J]. J. Math. Anal. Appl, 1975 (51): 607 - 620. 被引量:1
  • 3Mond B. Second order duality for nonlinear programmes [J]. Opsearch,1974 (11) : 90 -99. 被引量:1
  • 4Mahajan D J, Vartak M N. Generalization of someduality theorems in nonlinear programming [ J ]. Math. Prog,1977 (12) : 293 -317. 被引量:1
  • 5Hanson M. Second order invexity and duality in mathe- matical programming [ J ]. Opsearch, 1993, 30 (g) : 313 - 320. 被引量:1
  • 6Egudo R R, Hanson M. Second order duality in multiob- j ective programming [ J ]. Opsearch , 1993,30 ( 3 ) :223 - 230. 被引量:1
  • 7Bector C R , Chandra S , Husain I. Second order duality for a minimax programming problem [ J ]. Opsearch, 1991 (28) :249 - 263. 被引量:1
  • 8Srivastava M K, Govil M G. Second order duality for multiobjective programming involving ( F, p, tr ) -type - I functions[ J]. Opsearch ,2000,37 (4) :316 - 326. 被引量:1
  • 9Suneja S K, Sharma S V. Second order duality in vector optimization over cones[ J]. J. Appl. Math. Inf,2008,26 (2) :251 -261. 被引量:1
  • 10Chen X. Higher order symmetric duality in non - differ-entiable multiobjective programming problems [ J ]. Math. Anal. Appl, 2004, 290:423 -435. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部