摘要
Meetu在文献[1]中介绍了高阶锥凸、高阶(强)锥伪凸和高阶拟凸.本文在其研究的基础上,考虑目标函数是高阶锥伪凸、约束函数是高阶锥拟凸的情况,并给出弱极小、极小的充分性条件.此外,在高阶广义凸性的假设下,建立了一类高阶对偶模型的弱对偶和强对偶结果.
introduced minimum, Higher order cone convex, pseudo convex, strongly pseudo convex and quasiconvex functions are by Meetu [ 1 ]. In the paper, higher order sufficient optimality conditions are given for a weak minimum solution of a vector optimization problem under which an objective function is higher or-der cone pseudo convex and a constraint function is higher order cone quasiconvex. Moreover, weak and strong duality theorems are established for (HD) under these new generalized convexity assumptions.
出处
《重庆文理学院学报(自然科学版)》
2012年第2期5-8,共4页
Journal of Chongqing University of Arts and Sciences
基金
国家自然科学基金资助项目(11171363)
关键词
向量优化
高阶锥伪凸
高阶锥拟凸
高阶对偶
vector optimization
higher order cone pseudo convex
higher order cone quasiconvex
higher order duality