期刊文献+

基于模板匹配与塔式分解的蛋白质结构域分类

Structural classification of protein domain based on template match and pyramid decomposition
下载PDF
导出
摘要 首先构造结构域的距离矩阵灰度图像;其次建立典型二级结构的距离函数,并分析所呈现的灰度模式;然后基于模板匹配和塔式分解,提出了结构域特征;最后在结构类和折叠子两个层次实施结构域分类。本方法在第一种验证策略的分类精度分别为90.7%和74.6%,使用第二种验证策略的为93.8%和78.7%。相比其他方法,具有更高分类精度和更低的特征维数,说明本方法更有效。 The classification of structural domain is one of important approaches which contribute to explore the mechanism of folding and the relationship of protein structure and its biological function.First,this paper mapped spatial structure of protein domain into Cα-Cα distance matrix which could be further regarded as gray texture image.Next,it modeled two distance functions for α helix and β strand/sheet by considering their geometrical properties,and used to find their gray patterns in distance matrix image respectively.After that,it applied the techniques of spatial template match and pyramid decomposition to present the composition feature of α helix and β strand and the multi-scale topology feature of β sheet respectively.Furthermore,in terms of the hierarchy of structural classification of proteins(SCOP),performed domain classifications on structural class and fold levels respectively and compared with other methods.Finally,the results of domain classification show that the proposed method achieves the accuracies 90.7% and 74.6% in the first validation strategy,and 93.8% and 78.7% in the second validation strategy respectively.The comparison with other methods validates the presented method can perform domain classification effectively and outperform its competitors with both the higher classified accuracy and the more compacted dimension of feature vector.
出处 《计算机应用研究》 CSCD 北大核心 2012年第6期2081-2084,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(60872145) 博士后科学基金特别资助项目(201104682) 香江学者计划资助项目 西北工业大学基础研究项目(JC201164) 西北工业大学翱翔之星计划资助项目
关键词 结构域 距离矩阵 模板匹配 塔式分解 图像处理 分类 structural domain distance matrix template match pyramid decomposition image processing classification
  • 相关文献

参考文献18

  • 1谢雪英,李鑫,曹晨.基于复杂网络的蛋白质结构域组进化分析[J].生物物理学报,2010,26(12):1145-1153. 被引量:4
  • 2ANDREEVA A, HOWORTH D, JOHN-MARC C, et al. Data growth and its impact on the SCOP database: new developments[ J]. Nucleic Acids Research ,2008,36( Suppl 1 ) : D419-D425. 被引量:1
  • 3ALISON L C, IAN S, TONY L, et al. The CATH classification revisited-architectures reviewed and new ways to characterize structural divergence in superfamilies[ J]. Nucleic ACids Research,2009, 37( Suppl 1 ) :D310-D314. 被引量:1
  • 4NANNI L, SHI Jian-yu, BRAHNAM S, et al. Protein classification using texture descriptors extracted from the protein backbone image [ J]. Journal of Theoretical Biology,2010,264 (3) :1024-1032. 被引量:1
  • 5DARAS P, ZARPALAS D, AXENOPOULOS A, et el. Three-dimensional shape-structure comparison method for protein classification [J]. IEEE Trans on Computational Biology and Bioinformatics, 2006,3 ( 3 ) : 193-207. 被引量:1
  • 6DOKHOLYAN N V, LI L, DING F, et el. Topological determinants of protein folding [ J ]. Proceedings National Academy of Sciences of the United States of America, 2002,99 ( 13 ) : 8637- 8641. 被引量:1
  • 7KOTLOVYI V, NICHOLS W, TEN E L. Protein structural alignment for detection of maximally conserved regions [ J ]. Biophysical Chemistry,2003,105(2-3) :595-608. 被引量:1
  • 8CHOI I G, KWON J, KIM S H. Local feature frequency profile: amethod to measure structural similarity in proteins[ J]. Proceedings National Academy of Sciences of the United States of Amedca, 2004,101 ( 11 ) :3?97-3802. 被引量:1
  • 9TIMOTHY H, IRWIN K, GORDON C. The theory and practice of distance geometry[ J]. Bulletin of Mathematical Biology, 1983,45 (5) :665-720. 被引量:1
  • 10施建宇,张艳宁.使用图像特征构建快速有效的蛋白质折叠识别方法[J].生物物理学报,2009,25(2):106-116. 被引量:5

二级参考文献62

  • 1施建宇,潘泉,张绍武,梁彦.基于支持向量机融合网络的蛋白质折叠子识别研究[J].生物化学与生物物理进展,2006,33(2):155-162. 被引量:19
  • 2Kneller D G,Cohen F E,Langridge R.Improvements in protein secondary-structure prediction by enhanced neural networks.J Mol Biol,1990,214 (1):171~182. 被引量:1
  • 3Zhang C T,Chou K C.An optimization approach to predicting protein structural class from amino acid composition.Protein Sci,1992,1 (3):401~408. 被引量:1
  • 4Dubchak I,Muchnik I,Mayor C,et al.Recognition of a protein fold in the context of the SCOP classification.Proteins,1999,35(4):401 ~407. 被引量:1
  • 5Ding C H Q,Dubchak I.Multi-class protein fold recognition using support vector machines and neural networks.Bioinformatics,2001,17 (4):349~358. 被引量:1
  • 6Chinnasamy A,Sung W K,Mittal A.Protein structure and fold prediction using tree-augmented naive bayesian classifier.J Bioinform Comput Biol,2005,3 (4):803~820.. 被引量:1
  • 7Nakashima H,Nishikawa K,Ooi T.The folding type of a protein is relevant to the amino acid composition.J Biochem,1986,99(1):153~162. 被引量:1
  • 8Vapnik V.The Nature of Statistical Learning Theory.New York:Spinger-Verlag,1995.1~188. 被引量:1
  • 9Jaakkola T,Diekhans M,Haussler D.Using the fisher kernel method to detect remote protein homologies.In:Lengauer T,eds.Proceedings of The Seventh International Conference on Intelligent Systems for Molecular Biology.Menlo Park:AAAI Press,1999.149~158. 被引量:1
  • 10Zien A,Ratsch G,Mika S,et al.Engineering support vector machine kernels that recognize translation initiation sites.Bioinformatics,2000,16 (9):799~807. 被引量:1

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部