摘要
本文讨论了两顶点的度和与路可扩之间的关系,得到了如下结果:设G是n阶图,如果G中任意一对不相邻的顶点u,v满足d(u)+d(v)≥n+n/k(2≤k≤n-2),则G中任意一个满足k+1≤|P|<n的路P是可扩的.并且|P|的下界是最优的.
In this paper, we study the relations between degree sums and extending paths in graphs. The following result is proved. Let G be a graph of order n. If d(u)+d(v)≥n+n/k(2≤k≤n-2)for each pair of nonadjacent vertices u,v in V(G), then every path P of G with k+1≤|P|〈n is extendable. The lower bound of |P| is sharp.
出处
《数学进展》
CSCD
北大核心
2012年第3期356-360,共5页
Advances in Mathematics(China)
基金
山东省高等学校科技计划项目(No.J101.A11.)
山东科技大学"春蕾计划"项目(No.2010Azz053)