期刊文献+

基于有限质点法的结构动力非线性行为分析 被引量:15

DYNAMIC NONLINEAR ANALYSIS OF STRUCTURES BASED ON THE FINITE PARTICLE METHOD
原文传递
导出
摘要 有限质点法是以向量力学为基础的崭新的结构分析方法,该文将其应用到结构动力非线性行为分析中。该方法将结构离散为质点群,采用牛顿定律描述质点的运动,通过对质点行为的模拟和分析计算结构行为。该文介绍了有限质点法的基本思想,提出了该方法分析结构"动"与"静","线性"与"非线性"问题的独特思路。以杆系结构为例,推导了该方法求解结构动力反应,及几何、材料非线性问题的基本公式。通过三个数值算例,验证了该方法在结构动力非线性行为分析中的正确性和适用性。有限质点法在处理动力非线性问题时无需迭代求解和特殊修正,与传统方法相比在结构复杂行为分析中有明显的优势。 The Finite Particle Method (FPM), based on the Vector Mechanics, is a new structural analysis method. This paper explores the possibility of the proposed method being applied in the structural dynamic nonlinear analysis. In FPM, the analyzed domain is discreted to be a group of finite particles, where the motions of all particles follow Newton's second law. To obtain the structural motion behaviors, particle motions are simulated. The theoretical fundamentals oft he FPM are given. Special methods to handle 'Static' and 'dynamic', 'linear' and 'nonlinear' analysis in FPM are proposed. Taking the three dimensional bar element as an example, the formulations to calculate the dynamic, geometric and material nonlinear problems are derived. Three numerical examples are presented to demonstrate the accuracy and applicability of this method in dynamic nonlinear analysis. Iteration and special modification are not needed during the dynamic nonlinear analysis, which is more advantageous than traditional methods in the structural complex behavior analysis.
出处 《工程力学》 EI CSCD 北大核心 2012年第6期63-69,84,共8页 Engineering Mechanics
基金 国家自然科学基金项目(51008186 51108257) 广东省自然科学基金项目(2011040004173) 教育部高等学校博士点基金项目(20114402120001)
关键词 有限质点法 向量力学 几何非线性 材料非线性 动力分析 finite particle method (FPM) vector mechanics geometric nonlinearity material nonlinearity dynamic analysis
  • 相关文献

参考文献4

二级参考文献43

  • 1郑建军,周欣竹,姜璐.混凝土杨氏模量预测的三相复合球模型[J].复合材料学报,2005,22(1):102-107. 被引量:17
  • 2卢子兴,黄筑平,王仁.基于三相球模型确定泡沫塑料有效模量[J].固体力学学报,1996,17(2):95-102. 被引量:16
  • 3卢子兴,高镇同.应用微分方法确定复合泡沫塑料的杨氏模量[J].北京航空航天大学学报,1996,22(6):692-695. 被引量:11
  • 4Riks E. An increment approach to the solution of snapping and buckling problems [J]. International Journal of Solids Structures, 1979, 15(5): 529--551. 被引量:1
  • 5Crisfield M A. An arc-length method including line searches and accelerations [J]. International Journal of Numerical Methods in Engineering, 1983, 19(2): 1269-- 1289. 被引量:1
  • 6Pellegrino S. Structural computation with the singular value decomposition of the equilibrium [J]. International Journal of Solids Structures, 1993, 30(21): 3025 -- 3035. 被引量:1
  • 7Luo Yaozhi, Lu Jinyu, Geometrically non-linear force method for assemblies with infinitesimal mechanisms [J]. Computers & Structures, 2006, 84(31-32): 2194--2199. 被引量:1
  • 8Lu Jinyu, Luo Yaozhi. Pre- and post-buckling analysis of structures by geometrically nonlinear force method [C]. The 3rd International Conference on Steel and Composite Structures. Mancheste: Taylor & Francis, 2007. 被引量:1
  • 9Ting E C, Shih C, Wang Y K. Fundamentals of a vector form intrinsic finite element: Part I. Basic procedure and a plane flame element [J]. Journal of Mechanics, 2004, 20(2): 113-- 122. 被引量:1
  • 10Wu T Y, Wang R Z, Wang C Y. Large deflection analysis of flexible planar frames [J]. Journal of the Chinese Institute of Engineers, 2006, 29(4): 593 -- 606. 被引量:1

共引文献55

同被引文献83

引证文献15

二级引证文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部