期刊文献+

一类具有垂直传播的HIV模型的稳定性分析 被引量:3

Stability Analysis of an HIV Model with Vertical Transmission
下载PDF
导出
摘要 根据艾滋病的传播规律,本文建立了一类传染病模型.在模型中,HIV携带者分为幼年和成年两类,HIV可垂直传染,艾滋病患者有额外死亡.我们用再生矩阵求出了模型的基本再生数,并得出当基本再生数小于1时,模型只有无病平衡点,而当基本再生数大于1时,模型还有地方病平衡点.最后,应用第二加性复合矩阵等理论,文中证明了各平衡点全局渐近稳定性. According to the spreading law of AIDS, an epidemic model is formulated. In the model, the carriers of HIV include juveniles and adults, the HIV can be transmitted vertically, AIDS patients may die of disease. By means of the reproductive matrix, we obtain the basic reproductive number. If the basic reproductive number is less than 1, the model has disease-free equilibrium only. However, if the basic reproductive number is larger than 1, the model has another endemic equilibrium. By using second additive compound matrices, we have studied the global stability of all equilibriums.
出处 《工程数学学报》 CSCD 北大核心 2012年第3期399-404,共6页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金(11071283) 山西省自然科学基金(2009011005-3) 山西省重点学科项目(2011028 20111030)~~
关键词 垂直传播 基本再生数 稳定性 平衡点 vertical transmission basic reproductive number stability equilibrium point
  • 相关文献

参考文献8

  • 1李学志,王海霞.具有感染年龄结构的CD4^+T-细胞感染HIV病毒模型分析[J].应用数学学报,2009,32(2):207-224. 被引量:10
  • 2李建全,杨亚莉,王伟.一类带有治疗的HIV传播模型的定性分析[J].工程数学学报,2009,26(2):226-232. 被引量:4
  • 3Van den Driessche P, Watmough J. Reproduction numbers and sub-threshold endemic equilibria for com- partmental models of disease transmission[J]. Mathematical Biosciences, 2002, 180:29-48. 被引量:1
  • 4Thieme H R. Persistence under relaxed point-dissipativity (with applications to an endemic model)[J]. SIAM Journal on Mathematical Analysis, 1993, 24:407-435. 被引量:1
  • 5Krasnoselskii M W. Positive Solutions of Operator Equations[M]. Noorhoff: Groningen, 1964. 被引量:1
  • 6Hethcote H W, Thieme H R. Stability of the endemic equilibrium in epidemic models with subpopulation[J]. Mathematical Biosciences, 1985, 75:205-227. 被引量:1
  • 7Li M Y, et al. Global dynamics of an SEIR epidemic model with a varying total population size[J]. Math- ematical Biosciences, 1999, 160:191-213. 被引量:1
  • 8马知恩等著..传染病动力学的数学建模与研究[M].北京:科学出版社,2004:399.

二级参考文献36

  • 1Anderson R M. Mathematical and Statistical Studies of the Epidemiology of HIV. AIDS, 1990, 4: 107-121 被引量:1
  • 2Anderson R M, MAy R M. Complex Dynamical Behavior in the Interaction Between HIV and the Immune System. In: A.Glodbeter(Ed.), Cell signalling: From Experiment to Theoretical Models, Academic Press, New York, 1989, 335-348 被引量:1
  • 3Bailey J J, Fletcher J E, Chuck E T, Shrager R I. Akinetic Model of CD4^+ Lymphocytes with the Human Immunodeficiency Virus (HIV). Biosystems, 1992, 26:177-192 被引量:1
  • 4Bonhoeffer S, May R M, Shaw G M, Nowak M A. Virus Dynamics and Drug Therapy. Proc. Nat. Acad. Sci. USA, 1997, 94:6971-6985 被引量:1
  • 5De Boer R J, Perelson A S. Target Cell Limited and Immune Control Models of HIV Infection: a Comparison. J. Theor. Biol., 1998, 190:201-214 被引量:1
  • 6Hraba T, Dolezal J, Celikovsky S. Model-based Analysis of CD4^+ Lymphocyte Dynamics in HIV Infected Individuals. Immunology, 1990, 181:108 122 被引量:1
  • 7Intrator N, Decampo G P, Cooper L N. Analysis of Immune System Retrovirus Equations. In: A.S.(Ed.), Theoretical Immunology,2, Addison-Wesley, Redwood city, CA,1988, 85-101 被引量:1
  • 8Kirschner D E, Perelson A S. A Model for the Immune System Response to HIV: AZT Treatment Studies. In: O. Arino, D.Axelrod, M.Kimmel, M.Langlais (Eds.), Mathematical Population Dynamics: Analysis of Heterogeneity, Vol.1, Theory of Epidemics, Wuerz, Winnipeg, Canada, 1995, 295-311 被引量:1
  • 9Kirschner D E, Lemhart S, Serbin S. Optimal Control of the Chemotherapy of HIV. J. Math. Biol., 1997, 35:775-792 被引量:1
  • 10Kirscher D E, Webb G F. A Model for the Treatment Strategy in the Chemotherapy of AIDS. Bull. Math. Biol., 1996, 58:367-390 被引量:1

共引文献12

同被引文献16

  • 1王辉,金鸿章.可修复复杂系统脆性故障的研究[J].数学的实践与认识,2007,37(19):105-112. 被引量:5
  • 2联合国艾滋病规划署.2011年世界艾滋病日报告--全球流行情况[EB/OL].http://www.unaids.org.cn/cn/index,2012-09-30. 被引量:1
  • 3LOU J, MA Z E, SHAO Y M, et al. Modeling the interaction of T cells, antigen presenting cells and HIV - 1 in vivo [ J ]. Com- puters and Mathematics with Applications, 2004, 48 ( 1 - 2 ) : 9 -33. 被引量:1
  • 4NELSON P W, PERELSON A S. Mathematical analysis of delay differential equation models of HIV -1 infection[ J]. Math Bios- ci. , 2002, 179(1) : 73 -94. 被引量:1
  • 5JIANG X W, ZHOU X Y, SHI X Y, et al. Analysis of stability and Hopf bifurcation for a delay- differential equation model of HIV infection of CD4^+ T-cells[J]. Chaos, Solitons and Fractals, 2008, 38(2): 447-460. 被引量:1
  • 6ZHU H Y, LUO Y, CHEN M L. Stability and ttopf bifurcation of a HIV infection model with CTL- response delay[J]. Computers and Mathematics with Applications,2011, 62(8): 3091-3102. 被引量:1
  • 7TIAN X H, XU R. Global stability and Hopf bifurcation of an HIV-1 infection model with saturation incidence and delayed CTL immune response[J]. Applied Mathematics and Computation,2014, 237(4): 146-154. 被引量:1
  • 8Culshaw R V, RUAN S G. A delay differential equation model of HIV infection of CD4^+ T-cells[J]. Math Biosci, 2000, 165(3): 27-39. 被引量:1
  • 9SONG Y L, WEI J J. Bifurcation analysis for Chen's system with delayed feedback and its application to control of chaos[J]. Chaos Solitons and Fractals, 2004, 22(1):75-91. 被引量:1
  • 10Hale J K, Lunel S V. Introduction to Functional Differential Equation[M]. New York: Springer-Verlag, 1993. 被引量:1

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部