期刊文献+

等离子喷涂ZrO_2涂层显微结构表征和热导率分析(英文)

Microstructure Characterization and Thermal Conductivity Analysis of Plasma Sprayed ZrO_2 Coatings
下载PDF
导出
摘要 利用大气等离子喷涂制备了ZrO2涂层,采用扫描电子显微镜结合图像分析的方法对涂层的显微结构特征(总气孔率和大气率)进行了量化表征.同时利用扫描电子显微镜附带X射线扫描成像对涂层内部的微裂纹和大的分隔裂纹的三维分布进行了表征.据此建立了ZrO2涂层显微结构与热导率之间的关系.室温下,涂层N2的热导率较N1的低,因为涂层N2内气孔和微裂纹数较多;在1000℃,由于微裂纹的烧结作用导致热导率增大,所以涂层N2的热导率较N1反而高.高温下,涂层内由微裂纹汇聚而形成的大的分隔裂纹的存在则可以有效地抑制烧结,降低涂层的热导率. Yttria stabilized zirconia coatings were deposited using two different sets of parameters (NI, N2 coating). The microstructure features, such as total porosity and large porosity, were quantified by means of scanning electron microscope and image analysis. The three-dimensional distribution of microcracks and segmentation cracks was successfully revealed by the X-ray microscopy in the scanning electron microscope with three-dimensional microtomography capability. So the relationship between microstructure and thermal conductivity was found. At room temperature, thermal conductivity of N2 was lower than that of N1 due to larger pores and microcracks. At 1000℃ thermal conductivity of N1 was lower for the sintering of microcracks. The segmentation cracks formed by the propagation of microcracks could effectively reduce the thermal conductivity at high temperature.
出处 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2012年第5期550-554,共5页 Journal of Inorganic Materials
基金 Science and Technology Innovation Project of Shanghai Institute of Ceramics(Y17ZC5150G) Research Fund for Nanomaterials of Shanghai(11nm0506900)
关键词 ZrO2涂层 显微结构 热导率 X射线显微术 Zr02 coatings microstructure thermal conductivity X-ray microscopy
  • 相关文献

参考文献21

  • 1Padture N P, Gell M, Jordan E H. Materials science - thermal barrier coatings for gas-turbine engine apptications. Science, 2002, 296(5566): 280-284. 被引量:1
  • 2Mauer G, Vassen R. Current developments and challenges in thermal barrier coatings. Surf. Eng., 2011, 27(7): 477-479. 被引量:1
  • 3Hsiao W T, Su C Y, Huang T S, et al. The microstructural characteristics and mechanical properties of Ni-Al/h-BN coatings deposited using plasma spraying. J. Alloys Compd., 2011, 509(32): 8239-8245. 被引量:1
  • 4Basu S N, Ye G, Gevelber M, et al. Microcrack formation in plasma sprayed thermal barrier coatings. J. Refra. Meta. Mater., 2005, 23(4/5/6): 335?343. 被引量:1
  • 5Tan Y, Longtin J P, Sampath S, et al. Effect of the starting microstructure on the thermal properties of as-sprayed and thermally exposed plasma-sprayed YSZ coatings. J. Am. Ceram. Soc., 2009, 92(3): 710-716. 被引量:1
  • 6Xue M, Chandra S, Mostag J, et al. Formation of pores in thermal spray coatings due to incomplete filling of crevices in patterned surfaces. Plasma Chem. Plasma Process, 2007, 27(5): 647-657. 被引量:1
  • 7Vourlias G, Pistofidis N, Psyllaki P, et al. Plasma-sprayed YSZ coatings: microstructural features and resistance to molten metals. J. Alloys Compd., 2009, 483(1/2): 382-385. 被引量:1
  • 8Jang B K, Matsubara H. Thermophysical properties of EB-PVD coatings and sintered ceramics of 4mol% Y2O3-stabilized zirconia. J. Alloys Compd., 2006, 419(1/2): 243-246. 被引量:1
  • 9Chi W G, Sampath S, Wang H. Microstructure-thermal conductivity relationships for plasma-sprayed yttria-stabilized zirconia coatings. J. Am. Ceram. Soc., 2008, 91(8): 2636-2645. 被引量:1
  • 10Kulkarni A, Wang Z, Sampath S. Comprehensive microstructural characterization and predictive property modeling of plasma- sprayed zirconia coatings. Acta Mater., 2003, 51(9): 2457-2475. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部