期刊文献+

云计算环境中基于访问量和依赖性评价的数据分配算法 被引量:1

Data Allocation Algorithm Based on Visit Capacity and Dependency Evaluation in Cloud
下载PDF
导出
摘要 大量的大规模密集型数据需要存储在多个数据存储中心,而应用越来越广泛的云计算环境很好地解决了大规模密集型数据在分配中遇到的规模性问题。但是,云计算环境中多数据存储中心的数据分配会带来数据存储中心之间数据量的传输,从而导致数据访问效率低下。同时,单位时间上数据访问量的不平衡性会引起数据存储中心的访问瓶颈。以大规模密集型数据中的数据流为建模对象,提出了一种数据分配算法,它在保证数据存储中心负载平衡的基础上兼顾了密集型数据之间的依赖性。实验表明,相比于同类的数据分配算法,所提算法具有更好的综合表现,特别是在保证数据存储中心的负载平衡方面,效果突出。 A huge number of large-scale intensive data have to be stored in distributed data centers.Nowadays,under the cloud environment,large-scale data storage can be better supported.However,a challenging issue is that the transmission of intensive data between cloud data centers may cause low efficiency of data access.Also,the bottleneck of access on data center may be derived from the imbalanced capacity of data visit in unit interval.We first proposed a model based on data flow between large-scale intensive data.Afterwards,a data allocation algorithm was presented to guarantee the load balance of data centers while considering dependencies between intensive data.Extensive experiments confirm that our solution has better performances than conventional approaches particularly in load balance.
出处 《计算机科学》 CSCD 北大核心 2012年第5期141-146,171,共7页 Computer Science
基金 中科院知识创新项目(KGCX2-YW-174)资助
关键词 数据分配 云计算 大规模密集型数据 负载平衡 数据依赖 Data allocation Cloud computing Large-scale intensive data Load balance Data dependency
  • 相关文献

参考文献22

  • 1Brantner M, Florescuy D, C-raf D, et al. Building a Database on S3 [C]//SIGMOD. Vancouver, BC, Canada, 2008 : 251-263. 被引量:1
  • 2Moretti C, Bulosan J, Thain D, et al. All Pairs: An Abstraction for Data-intensive Cloud Computing [C]//IEEE International Parallel & Distributed Processing Symposium ( IPDPS ' 08 ). 2008,1-11. 被引量:1
  • 3Deelman E,Chervenak A. Data Management Challenges of Data intensive Scientific Workflows[C]//IEEE International Symposium on Cluster Computing and the Grid. 2008 : 687-692. 被引量:1
  • 4Zeng Wen-ying, Zhao Yue-long, Ou Kai ri. Research on cloud storage architecture and key technologies[C]//Proceedings of the 2nd International Conference on Interatction Sciences. 2009. 被引量:1
  • 5Yuan D, Yang Y, Liu X, et al. A data placement strategy in scientific cloud workflows[J]. Future Generation Computer Systems, 2010,26(6) : 1200-1214. 被引量:1
  • 6Foster I, Yong Z, Raicu I, et al. Cloud Computing and Grid Computing 360-degree Compared [C]//Grid Computing Environments Workshop(GCE '08). 2008: 1-10. 被引量:1
  • 7Barga R,Gannon D. Scientific versus Business Workflows[M]. Workflows for e-Science, 2007 : 9-16. 被引量:1
  • 8Kosar T, Livny M. Stork: making data placement a first class citizen in the grid[C]// Proceedings of 24th International Conference on Distributed Computing Systems(ICDCS 2004). 2004: 342-349. 被引量:1
  • 9Hardavellas N, Ferdman M. Reactive NUCA:near-optimal block placement and replication in distributed caches[C]//Proceedings of the 36th Annual International Symposium on Computer Architecture(ISCA '09). Austin,TX,USA,2009:184-195. 被引量:1
  • 10Xie T. SEA: A Striping based Energy-aware Strategy for Data Placement in RAID-Structured Storage Systems [J]. IEEE Transactions on Computers, 2008,57: 748-761. 被引量:1

二级参考文献27

  • 1Deelman E,Chervenak A.Data management challenges of data-intensive scientific workflows//Proceedings of the IEEE International Symposium on Cluster Computing and the Grid(CCGRID).Lyon,France,2008:687-692. 被引量:1
  • 2Deelman E,Blythe J,Gil Y,Kesselman C,Mehta G,Patil S,Su M H,Vahi K,Livny M.Pegasus:Mapping scientific workflows onto the grid//Proceedings of the European Across Grids Conference(AxGrids).Nicosia,Cyprus,2004:11-20. 被引量:1
  • 3Ludascher B,Altintas I,Berkley C,Higgins D,Jaeger E,Jones M,Lee E A.Scientific workflow management and the Kepler system.Concurrency and Computation:Practice and Experience,2005,18(10):1039-1065. 被引量:1
  • 4Oinn T,Addis M,Ferris J,Marvin D,Senger M,Greenwood M,Carver T,Glover K,Pocock M R,Wipat A,Li P.Taverna:A tool for the composition and enactment of bioinformatics workflows.Bioinformatics,2004,20(17):3045-3054. 被引量:1
  • 5Ghemawat S,Gobioff H,Leung S T.The google file system.ACM SIGOPS Operating Systems Review,2003,37(5):29-43. 被引量:1
  • 6Wang L,Tao J,Kunze M,Castellanos A C,Kramer D,Karl W.Scientific cloud computing:Early definition and experience//Proceedings of the 10th IEEE International Conference on High Performance Computing and Communications(HPCC).Dalian,China,2008:825-830. 被引量:1
  • 7Wieczorek M,Prodan R,Fahringer T.Scheduling of scientific workflows in the ASKALON grid environment.SIGMOD Record,2005,34(3):56-62. 被引量:1
  • 8Baru C,Moore R,Rajasekar A,Wan M.The SDSC storage resource broker//Proceedings of the IBMCentre for Advanced Studies Conference.Toronto,Canada,1998:1-12. 被引量:1
  • 9Churches D,Gombas G,Harrison A,Maassen J,Robinson C,Shields M,Taylor I,Wang I.Programming scientific and distributed workflow with Triana services.Concurrency and Computation:Practice and Experience,2006,18:1021-1037. 被引量:1
  • 10Chervenak A,Deelman E,Foster I,Guy L,Hoschek W,Iamnitchi A,Kesselman C,Kunszt P,Ripeanu M,Schwartzkopf B,Stockinger H,Stockinger K,Tierney B.Giggle:A framework for constructing scalable replica location services//Proceedings of the ACM/IEEE Conference on Supercomputing.Baltimore,Maryland,USA,2002:1-17. 被引量:1

共引文献140

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部