期刊文献+

在线生物文献MRI图像识别系统的设计与实现

Design and implementation of MRI image recognition system based on online biological literature
下载PDF
导出
摘要 为构建在线生物文献核磁共振图像库,通过分析在线医学文献图像的特点,用塔式梯度方向直方图进行图像特征提取,结合图像对应的文本标注,采用基于高斯过程的分类方法设计实现了一个在线生物文献MRI图像识别系统。实验结果表明,该系统比基于单一特征的系统识别率更高,同时比基于标准的SVM和KNN的识别方法性能更好。表明该系统的设计是可行、可靠和有效的。 In order to construct an MRI image database from online biologic literature,the features of images in online biologic literature are analyzed and a method is proposed using the pyramid histogram of words to represent image features,together with word frequency features of the text,and then target images are identitied by the classification method based on the Gaussian process(GP),and an MRI image recognition system based on online biological literature is designed and realized.Experimental result shows the system has a higher recognition accuracy than systems based on single feature,and also has a better performance than standard recognition methods such as SVM and KNN.The result shows the design of this system is feasible,reliable and efficient.
出处 《计算机工程与设计》 CSCD 北大核心 2012年第5期1886-1889,共4页 Computer Engineering and Design
基金 浙江省自然科学基金项目(NY1101359)
关键词 核磁共振 塔式梯度方向直方图 高斯过程 图像识别 MRI PHOW Gaussion process image recognition
  • 相关文献

参考文献1

二级参考文献17

  • 1Qian Y, Murphy R F. Improved recognition of Figures containing fluorescence microscope images in online journal articles using graphical models [ J]. Bioinformatics, 2008, 24(4): 569 -576. 被引量:1
  • 2Murphy R F, Velliste M, Yao Jie, et al. Searching online journals for fluorescence microscope images depicting protein subcellular location patterns [ C ]//Proceedings of the 2nd IEEE International Symposium on Bioinformatics and Bioengineering. Washington, DC : IEEE Computer Society, 2001:119 - 128. 被引量:1
  • 3Murphy R F, Velliste M, Porreca G. Robust Numerical features for description and classification of subcellular location patterns in fluorescence microscope Images [ J]. Journal of VLSI Signal Processing Systems, 2003, 35 (3), 311 -321. 被引量:1
  • 4EBSCO databases[ DB/OL]. U.S. & Canada: EBSCO Industries, Inc. [ 2009 - 05 - 18 ]. http://www, ebscohost. com. 被引量:1
  • 5Shatkay H, Chen Nawei, Blostein D. Integrating image data into biomedical text categorization [ J]. Bioinformatics, 2006, 22(14): 446- 453. 被引量:1
  • 6Yu Hong, Lee M. Accessing bioscience images from abstract sentences [ J ]. Bioinformatics, 2006, 22 ( 14 ) :e547 - e556. 被引量:1
  • 7Rafkind B, Lee M, Chang S F, et al. Exploring text and image features to classify images in bioscience literature [ C ]// Proceedings of the BioNLP Workshop on Linking Natural Language Processing and Biology at HLT-NAACL 06, 2006:73 - 80. 被引量:1
  • 8Xu S, McCusher J, Krauthammer M. Yale Image Finder (YIF) : a new search engine for retrieving biomedical images [J]. Bioinformaties, 2008,24(17) :1969 - 1970. 被引量:1
  • 9Chuang C, Lo M, Lee K, et al. Magnetic resonance spectroscopy study in basal ganglia of patients with my- oclonic epilepsy with ragged-red fibers[J]. Neurology In- dia, 2007, 55(4): 385-387. 被引量:1
  • 10Boraschi P, Donati F, Gigoni R, et al. Complications After Liver Transplantation: Evaluation With Magnetic Resonance Imaging, Magnetic Resonance Cholangiography, and 3-Dimensional Contrast-Enhanced Magnetic Resonance Angiography in a Single Session [ J ]. Canadian Association of Radiologists Journal, 2008, 59 (5): 259 - 263. 被引量:1

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部