期刊文献+

求解无环K短路径的Dijkstra算法 被引量:2

K-shortest Loopless Path Finding on the Basis of Improved Dijkstra Algorithm
下载PDF
导出
摘要 对多个标号的求解K短路径的Dijkstra改进算法进行完善,引入两个前驱节点矩阵pre和Kpre,通过这两个矩阵可以求出起始点到当前节点的当前路径,并判断这条路径是否有环,从而在寻找K短路的过程中避免了环的出现,完善后的算法可以求出前K短无环路径,该算法仅需要较少的额外计算量,所以仍然保持了算法的多项式复杂性.然后在不同规模的网络上对完善后的算法进行数值试验,验证了算法的正确性和有效性. This article aims to-make some improvements on the basis of the improved Dijkstm algorithm that solves the K-shortest paths by the use of many labels on each node of a network, bring in two precursor node matrices pre and Kpre, the current path from the original node to the current node can be gained by means of the two matrices, then judge that whether this path is loopless, so that we can avoid loop appears in the process of the K-shortest paths finding, it turns out that the improved algorithm can find out the K-shortest paths, and it only needs less extra calculation amount, so it still keep a polynomial complexity of the original algorithm. Then numerical examples in different scale network are given to check the correctness and the effectiveness of the improved algorithm.
作者 赵见
出处 《淮阴师范学院学报(自然科学版)》 CAS 2012年第1期8-12,52,共6页 Journal of Huaiyin Teachers College;Natural Science Edition
基金 国家自然科学基金资助项目(70901073) 中央高校基本科研业务费专项基金项目(2010LKSX01)
关键词 DIJKSTRA算法 K短路 无环 多标号 dijkstm algorithm K-shortest paths loopless many labels
  • 相关文献

参考文献12

  • 1Palmgren M, Di Yuan. A short summary on K shortest path: Mgorithms and applications [EB/OL]. http://www, esc. auckland. ac. nz/Mason/Courses/LinkopingColGen99/kth. 1999,2006-01-08. 被引量:1
  • 2Dijkstra E W. A note in connexion with graphs [ J]. Numerische Mathematik, 1:269- 271. 被引量:1
  • 3Eppstein D. Finding the k shortest paths [J]. SIAM Journal on Computing, 1999, 28(2) : 652 - 673. 被引量:1
  • 4Ibrahim Z, Tsuboi Y, Muhammad M S, et al. DNA implementation of k-shortest paths computation[ A]. IEEE Congress on Evolutionary Computation [ C]. UK: Edinburgh, 2005, 1:707 - 713. 被引量:1
  • 5Wu Q J, Hartley J. Using K-shortest paths algorithms to accommodate user preferences in the optimization of public transport travel[ A]. ASCE. The 8th International Conference on Applications of Advanced Technologies in Transportation Engineering [ C]. U. S: ASCE, 2004. 181- 186. 被引量:1
  • 6Carlyle W M, Wood R K. Near-shortest and K-shortest simple paths [J]. Networks, 2005, 46(2) : 98 - 109. 被引量:1
  • 7Liu G, Ramakrishnan K G. An algorithm for finding k shortest paths subject to multiple constraints [C]. Proceedings of the INFOCOM 2001 Conference, IEEE, Anchorage, Alaska, 2001. 743- 749. 被引量:1
  • 8Macgegor M H, Grover W D. Optimized k-shortest-paths algorithm for facility restoration [J]. Software Practice and Experience, 1994,24 (9):823 - 828. 被引量:1
  • 9李成江.新的k最短路算法[J].山东大学学报(理学版),2006,41(4):40-43. 被引量:15
  • 10张嵩,王军,马金平.求解K最短路径的改进Dijkstra算法[J].中国经济与管理科学,2009(4):29-31. 被引量:2

二级参考文献8

  • 1Myrna Palmgren,Di Yuan.A short summary on K shortest path:Algorithms and applications[EB/OL].http://www.esc.auckland.ac.nz/Mason/Courses/LinkopingColGen99/kth.pdf 1999,2006-01-08. 被引量:1
  • 2Eppstein D.Finding the k shortest paths[J].SIAM Journal on Computing,1999,28(2):652~673. 被引量:1
  • 3John Hershberger,Matthew Maxely,Subhash Suriz.Finding the K shortest simple paths:A new algorithm and its implementation[R].ALENEX Baltimore,2003. 被引量:1
  • 4Zuwairie Ibrahim,Yusei Tsuboi,Mohd Saufee Muhammad,et al.DNA implementation of k-shortest paths computation[A].2005 IEEE Congress on Evolutionary Computation[C].UK:Edinburgh,2005,1:707~713 被引量:1
  • 5QIUJIN WU,JOANNA HARTLEY.Using K-shortest paths algorithms to accommodate user preferences in the optimization of public transport travel[A].ASCE.The 8th International Conference on Applications of Advanced Technologies in Transportation Engineering[C].U.S:ASCE,2004.181~186. 被引量:1
  • 6W Matthew Carlyle,R Kevin Wood.Near-shortest and K-shortest simple paths[J].Networks,2005,46(2):98 ~ 109. 被引量:1
  • 7G Liu,K G Ramakrishnan.A * Prune:An algorithm for fmding k shortest paths subject to multiple constraints[C].Proceedings of the INFO-COM 2001 Conference,IEEE,Anchorage,Alaska,2001.743~749. 被引量:1
  • 8Macgegor M H,Grover WD.Optimized k-shortest-paths algorithm for facility restoration[J].Software Practice and Experience,1994,24(9):823~828 被引量:1

共引文献15

同被引文献21

  • 1牛新奇,潘荫荣,胡幼华.K(≤3)条渐次短路径搜索算法的研究[J].计算机工程与应用,2005,41(22):51-53. 被引量:7
  • 2戴树贵,陈文兰.一个求解k短路径实用算法[J].计算机工程与应用,2005,41(36):63-65. 被引量:20
  • 3陈文兰,潘荫荣.一个求解次短和渐次短路径的实用算法[J].计算机应用与软件,2006,23(1):94-96. 被引量:5
  • 4Ham D B, Lockwood S. National needs assessment for ensuring transportation infrastructure security [R]. Washington DC: American Association of State High- way and Transportation Officials, 2002. 被引量:1
  • 5Scott D M, Novak D C, Lisa A H, et al. Network ro- bustness index: a new method for identifying critical links and evaluating the performance of transportation networks[J']. Journal of Transport Geography, 2006, 14(3) ..215-227. 被引量:1
  • 6Murray-Tuite P M. Identification of vulnerable trans- portation infrastructure and household decision mak- ing under emergency evacuation conditions[D~. Aus- tin: University of Texas at Austin, 2003. 被引量:1
  • 7Chen A, Kongsomsaksakul S, Zhou Z. Assessing net- work vulnerability using a combined travel demand model [ C 3//TRB. Transportation Research Board 86th Annual Meeting. Washington DC: TRB, 2007: 2559-2577. 被引量:1
  • 8Ukkusuri S V,Yushimito W F. A methodology to as- sess the criticality of highway transportation networks I-J3. Journal of Transportation Security, 2009, 2 ( 1/ 2) ..29-46. 被引量:1
  • 9Bar-Noy A, Khuller S, Schieber B. The complexity of finding most vital arcs and nodes[R~. Maryland: Uni- versity of Maryland, 1995. 被引量:1
  • 10Sheffi Y. Urban transportation networks:equilibrium analysis with mathematical programming methods [R]. New Jersey: Prentice Hall, 1985. 被引量:1

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部