期刊文献+

面向几何坐标的张拉整体结构找形算法

Geometry-oriented form-finding method for tensegrity
下载PDF
导出
摘要 提出一种可满足给定几何坐标的张拉整体结构找形方法.从结构平衡方程的2种不同形式出发,借助平衡矩阵奇异值分解与力密度矩阵特征值分解后得到的正交向量,分别构造自应力及几何坐标,并引入节点坐标作为约束条件,给出基于构件自应力与节点坐标非线性迭代的求解技术及其算法流程.结果表明,只需给出结构拓扑连接关系及若干已知节点坐标,找形算法便可用于寻找满足给定几何外形的张拉整体以及新的非规则张拉整体形式. A new form-finding method for computing the given nodal coordinates tensegrity was proposed. The equilibrium equation was formulated in two different ways. Based on the orthogonal vectors that were generated by the singular value decomposition of equilibrium matrix and eigenvalue decomposition of force density matrix, the self stress modes and nodal coordinates were obtained, respectively. The given nodal coordinates were introduced as constraint conditions. Self stress modes and nodal coordinates were calculated iteratively until the results converge, and the corresponding procedure was established. The topology and a set of nodal coordinates were specified in this method. The proposed approach can be applied to the form-finding of tensegrity with required shape, and the form-finding of novel nonregular tensegrity system.
出处 《深圳大学学报(理工版)》 EI CAS 北大核心 2012年第3期211-216,共6页 Journal of Shenzhen University(Science and Engineering)
基金 国家自然科学基金资助项目(51008065) 江苏省自然科学基金资助项目(BK2010428)~~
关键词 结构工程 张拉整体结构 找形算法 节点坐标 平衡矩阵 力密度矩阵 structural engineering tensegrity form-finding method nodal coordinates equilibrium matrix force density matrix
  • 相关文献

参考文献15

  • 1Motro R. Tensegrity Structural Systems for the Future [ M]. London (UK) : Bunerworth-Heinemann, 2003. 被引量:1
  • 2Skelton R E, Oliveira M C. Tensegrity Systems [ M ]. New York (America), Springer, 2009. 被引量:1
  • 3Tibert G, Pellegrino S. Review of form-finding methods for tensegrity structures [ J]. International Journal of Space Structures, 2003, 18 (4) : 209-223. 被引量:1
  • 4Zhang L, Maurin B, Motro R. Form-finding of nonregular tensegrity systems [ J ]. Journal of Structural Engineering, ASCE, 2006, 132(9): 1435-1440. 被引量:1
  • 5] Zhang J Y, Ohsaki M, Kanno Y. A direct approach to the design of geometl7 and forces of tensegrity systems [ J ].International Journal of Solids and Structures, 2006, 43 (7/8) : 2260-2278. 被引量:1
  • 6Estrada G G, Bungartz H J, Mohrdieck C. Numerical form finding of tensegrity structure [ J ]. International Journal of Solids and Structures, 2006, 43 (22/23) : 6855-6868. 被引量:1
  • 7Tran H C, Lee J. Advanced form finding of tensegrity [ J]. Computers and Structures, 2009, 88 (3/4) : 236- 247. 被引量:1
  • 8潘长城,徐晨,李国.解全局优化问题的差分进化策略[J].深圳大学学报(理工版),2008,25(2):211-215. 被引量:3
  • 9Paul C, Lipson H, Cuevas F V. Evolutionary form-forming of tensegrity structures [ C 1// Proceedings of the 2005 Genetic and Evolutionary Computation. Washington (America) : ACM Press, 2005: 3-10. 被引量:1
  • 10Rieffel J, Cuevas F V, Lipson H. Automated discovery and optimization of large irregular tensegrity structures [ J ]. Computers and Structures, 2009, 87 (5/6) : 368- 379. 被引量:1

二级参考文献7

  • 1Storn R,Price K.差分演化算法-在连续空间上简单有效的全局优化策略[R].技术报告,TR-95-012,Berkeley,USA:ICSI,1995. 被引量:1
  • 2Price K,Storn R,Lampinen J.差分演化算法-一种实用的全局优化算法[M].柏林:Springer-Verlag出版社,2005.20-27. 被引量:1
  • 3FrancoisO.解全局最小化问题的进化策略及其马尔可夫链分析.IEEE进化计算学报,1998,2(3):77-90. 被引量:1
  • 4EbenauC RottschaferJ ThieraufG.加入惩罚函数的改进进化策略对混合离散结构的优化.工程软件进展,2005,36(1):29-38. 被引量:1
  • 5YangSM ShaoDG LuoYJ.一种新型的多目标函数优化进化策略.应用数学与计算学报,2005,170(2):850-873. 被引量:1
  • 6MontesEM CoelloCAC.求解约束优化问题的简单多成员进化策略.IEEE进化计算学报,2005,9(1):1-17. 被引量:1
  • 7BerlichR KunzeM.并行进化算法.核仪器与物理研究方法,2003,502(2):467-470. 被引量:1

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部