期刊文献+

从反应活化能垒角度探讨多晶硅还原机理 被引量:1

Mechanism of polycystalline silicon reduction from the standpoint of activation energy
下载PDF
导出
摘要 三氯氢硅还原反应是改良西门子法生产多晶硅的主要过程,本文对三氯氢硅还原反应进行分子模拟,采用密度泛函理论方法(DFT)研究了三氯氢硅还原成多晶硅的能量变化,对其分子结构进行优化,通过LST/QST方法计算多晶硅还原过程中可能出现的过渡态及能量的变化,得到过渡态TSa、TSb、TSc。结果表明,三氯氢硅还原反应通道Path a所得过渡态的活化能垒较低,过程进行较顺利。 Reduction of trichlorosilane was the main reaction course to generate polycystalline silicon using improves siemens. We investigated the reduction process and energy changes of the reaction by density functional theory (DFT) method. In addition, The structures of trichlorosilane were optimized. We calculated the possible transition states and energy changes during the reaction with the linear or quadratic synchronous transit (L ST/ QST) method. In addition, we obtained three transition states like TSa, TSb and TSc. The results showed that the transition state "TSa" during the reaction had a lower activation energy barrier and thus the process went easier.
作者 王友承
出处 《化学工程师》 CAS 2012年第5期24-25,33,共3页 Chemical Engineer
关键词 三氯氢硅 分子模拟 密度泛函理论 过渡态 trichlorosilane molecular simulation density dunctional theory transition state
  • 相关文献

参考文献2

二级参考文献20

  • 1Korec,J.J.Crystal Growth 1979,46,362-370. 被引量:1
  • 2Bloem,J.;Claassen,W.A.P.;Valkenburg,W.G.J.N.J.Journal of Crystal Growth 1982,57,177-184. 被引量:1
  • 3Gupta,P.;Coon,P.A.;Koehier,B.G.J.Chem.Phys.1999,93,2827-2835. 被引量:1
  • 4Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;Scuseria,G.E.;Robb,M.A.;Cheeseman,J.R.;Zakrzewski,V.G.;Montgomery,J.A.;Stratmann,Jr.R.E.;Burant,J.C.;Dapprich,S.;Millam,J.M.;Daniels,A.D.;Kudin,K.N.;Strain,M.C.;Farkas,O.;Tomasi,J.;Barone,V.;Cossi,M.;Cammi,R.;Mennucci,B.;Pomelli,C.;Adamo,C.;Clifford,S.;Ochterski,J.;Petersson,G.A.;Ayala,P.Y.;Cui,Q.;Morokuma,K.;Malick,D.K.;Rabuck,A.D.;Raghavachari,K.;Foresman,J.B.;Cioslowski,J.;Ortiz,J.V.;Stefanov,B.B.;Liu,G.;Liashenko,A.;Piskorz,P.;Komaromi,I.;Gomperts,R.;Martin,R.L.;Fox,D.J.;Keith,T.;Al-Laham,M.A.;Peng,C.Y.;Nanayakkara,A.;Gonzalez,C.;Challacombe,M.;Gill,P.M.W.;Johnson,B.;Chen,W.;Wong,M.W.;Andres,J.L.;Gonzalez,C.;Head-Gordon,M.;Replogle,E.S.;Pople,J.A.Gaussian 98,Revision A.3,Gaussian,Inc.,Pittsburgh PA 1998. 被引量:1
  • 5Fukui,K.J.Phys.Chem.1970,74,4161-4163. 被引量:1
  • 6Nishizawa,J.;Terasaki,T.;Shimbo,M.J.Crystal Growth 1972,17,241-248. 被引量:1
  • 7Sedgwick,T.O.;Smith,J.E.J.Crystal Growth 1975,31,264-273. 被引量:1
  • 8Ohshita,Y.;Hosoi,N.J.Crystal Growth 1993,131,495-500. 被引量:1
  • 9Brown,A.R.;Doren,D.J.J.Chem.Phys.1999,110,2643-2651. 被引量:1
  • 10Wong,T.C.;Yu,C.C.;Wu,J.J.J.Crystal Growth 2002,243,419-426. 被引量:1

共引文献1

同被引文献10

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部