期刊文献+

待定系数法解常系数齐次分数阶微分方程组

Solving Systems of Linear Fractional Differential Equations with Constant Coefficients by the Method of Undetermined Coefficients
下载PDF
导出
摘要 用Jordan标准型方法研究常系数齐次分数阶微分方程组的基本解矩阵,得到了方程组的基本解系.结果表明,可以用待定系数法解常系数齐次分数阶微分方程组,并且该结果蕴含常系数线性一阶微分方程组. The authors investigated the solution matrix of the systems of the linear fractional differential equations with constant coefficients,and obtained some exact solutions of the systems of linear equations using Jordan canonical matrix.We can solve the systems of linear fractional differential equations with constant coefficients using the method of undetermined coefficients,and the results contain the solution of linear first-order differential equations with constant coefficients.
作者 代群 李辉来
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2012年第3期377-380,共4页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:10771085)
关键词 分数阶微分方程 待定系数法 常系数 方程组 fractional differential equations undetermined coefficients method invariable coefficient systems
  • 相关文献

参考文献10

  • 1Atanackovic T M, Stankovic B. On a System of Differential Equations with Fractional Derivatives Arising in Rod Theory [ J]. Journal of Physics A: Mathematical and General, 2004, 37(4) : 1241-1250. 被引量:1
  • 2Ahmad A. Existence and Uniqueness Theorems of Higher Order Fractional Differential Equations [ J]. Journal of Applied Sciences, 2010, 10(18) : 2132-2135. 被引量:1
  • 3Hadid S B. Local and Global Existence Theorems on Differential Equations of Non-integer Order [ J ]. J Fract Calc, 1995(7) : 101-105. 被引量:1
  • 4Hadid S B, Momany S, Taani A. Some Existence on Fractional Equations of Generalized Order through a Fix-Point Theorem [J]. J Fract Calc, 1996(9) : 4549. 被引量:1
  • 5Hadid S B, Momany S, Masaedeh B. On the Existence of Maximal and Minimal Solutions of Differential Equaions of Non Integer Order [Jl. J Fraet Cale, 1996(9) : 41-44. 被引量:1
  • 6LIN Wei. Global Existence Theory and Chaos Control of Fractional Differential Equations [ J ]. J Math Anal Appl, 2007, 332( 1 ) : 709-726. 被引量:1
  • 7Ibtahim R W, Momani S. On the Existence and Uniqueness of Solutions of a Class of Fractional Differential Equations [J]. J Math Anal Appl, 2007, 334(1): 1-10. 被引量:1
  • 8Podlubny I. Fractional Differential Equation [ M ]. New York : Academic Press, 1999. 被引量:1
  • 9He J H. Some Applications of Nonlinear Fractional Differential Equations and Their Approximations [ J ]. Bull Sci Technol, 1999, 15(2): 86-90. 被引量:1
  • 10Podlubny I. Geometric and Physical Interpretation of Fractional Integratiation and Fractional Differential [ J ]. Fract Calculus Appl Anal, 2002, 5(4) : 367-386. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部