期刊文献+

超声乳腺肿瘤的全自动SVM检测与水平集分割算法 被引量:7

Fully Automatic Detection and Segmentation Algorithm for Ultrasound Breast Images Using SVM and Level Set
下载PDF
导出
摘要 超声图像检测是当前乳腺癌诊断的主要辅助手段之一.为实现超声乳腺肿瘤的计算机自动辅助诊断,提出一种基于支持向量机(SVM)目标检测与水平集图像分割相结合的全自动肿瘤提取算法.首先提取超声图像训练集的分块特征来训练SVM分类器,对测试集图像进行检测得到可疑病灶区域;然后提取可疑区域边缘作为水平集的初始轮廓,使用加入Bhattacharyya距离项的Chan-Vese主动轮廓改进模型进行可疑病灶区域的轮廓演化,得到准确的轮廓;最后综合面积、位置、灰度、纹理等因素设计区域评价筛选准则,去除可疑病灶中的干扰区域,得到最终的肿瘤分割结果.在真实病例数据集上的测试结果表明,利用该算法在良恶性肿瘤检测分割中均有较好表现. Ultrasonic technology is one of the most important diagnostic tools for breast cancer detection.In this paper,we propose a fully automatic detection and segmentation algorithm of masses on breast ultrasound images by using support vector machine and level sets,which can be summarized in four distinct steps: 1)a SVM classifier for tumor detection is trained based on both gray and textural features;2)all suspicious tumor regions,possibly including false positive regions,are detected with the trained SVM classifier;3)an improved Chan-Vese(CV)active contour model,which adds a Bhattacharyya distance item to CV level set energy functional and performs better on ultrasound images,is used to segment regions accurately;4)all regions are ranked by a score formula which combines area,position,gray level and textural information,and the highest score region is identified as the tumor region.The whole algorithm is completely automatic with no manual intervention.Experimental results demonstrate the high efficiency of the proposed method.
作者 徐静 高鑫
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2012年第5期662-668,676,共8页 Journal of Computer-Aided Design & Computer Graphics
基金 国家"八六三"高技术研究发展计划(2008AA121805-1)
关键词 超声乳腺肿瘤检测分割 支持向量机 水平集 Chan-Vese主动轮廓模型 BHATTACHARYYA距离 breast tumor detection support vector machine level set Chan-Vese active contour model Bhattacharyya distance
  • 相关文献

参考文献2

二级参考文献26

  • 1[1]Venkateswar V, Chellappa R. Extraction of straight lines in aerial images. IEEE Trans. on PAMI, 1992, 14(11): 1111-1114 被引量:1
  • 2[2]Kass M, Witkin A, Terzopoulos, D. Snake:Active contour models. J. Computer Vision, 1988, 321-331 被引量:1
  • 3[3]Lobregt S A, Viergever M A. A discrete dynamic contour model.IEEE Trans. on Medical Imaging, 1995,14(1):12-24 被引量:1
  • 4[4]Remi R. Region-based strategies for active contour models. Int.J. Computer Vision, 1994,13: (2): 229-251 被引量:1
  • 5[5]Cohen L D, Cohen I. Finite-element methods for active contour models and balloons for 2-D and 3-D images. IEEE Trans. on PAMI,1993,15(11): 1131-1147 被引量:1
  • 6[6]Williams D J, Shah M. A fast algorithm for active contours and curvature estimation. CVGIP: Image Understanding,1992,55(1):14-26 被引量:1
  • 7[7]Witkin A, Terzpopoulos D, Kass M. Signal matching through scale space. Int. J. Computer Vision: 1987:133-144 被引量:1
  • 8[8]Whitten G. Scale space tracking and deformable sheet models for computational vision. IEEE Trans. on PAMI, 1993,15 (7): 697-706 被引量:1
  • 9[9]Horn B K P, Schunk B G. Determining optical flow. Artificial Intelligence, 1981,17:185-203 被引量:1
  • 10Dokur Z,Olmez T.Tissue segmentation in ultrasound images by using genetic algorithms[J].Expert Systems with Applications,2008,34(4):2739-2746. 被引量:1

共引文献7

同被引文献73

  • 1杜峰,施文康,邓勇,朱振幅.红外序列图像的支持向量机分割方法[J].光电工程,2005,32(3):62-65. 被引量:9
  • 2赵衍运,蔡安妮.使用支持向量机分割指纹图像的方法[J].北京邮电大学学报,2006,29(2):38-41. 被引量:6
  • 3郭兴旺,高功臣,吕珍霞.主分量分析法在红外数字图像序列处理中的应用[J].红外技术,2006,28(6):311-314. 被引量:6
  • 4Nobel 1 A. Boukerroui D. Ultrasound image segmentation: a survey[J]. IEEE Transactions on Medical Imaging. 2006. 25 (8): 987-1010. 被引量:1
  • 5Rother C. Kolmogorov V. Blake A. "GrabCut": interactive foreground extraction using iterated graph cuts[J]. ACM Transactions on Graphics. 2004. 23(3): 309-314. 被引量:1
  • 6Garnier C. Bellanger 11. Wu K. et al . Prostate segmentation in HIFU therapy[J]. IEEE Transactions on Medical Imaging. 2011. 30(3): 792-803. 被引量:1
  • 7Sun S H. Bauer C. Beichel R. Automated 3-D segmentation of lungs with lung cancer in CT data using a novel robust active shape model approach[J]. IEEE Transactions on Medical Imaging. 2012. 31(2): 449-460. 被引量:1
  • 8Si W X. Yuan Z Y. Liao X Y. et al . 3D soft tissue warping dynamics simulation based on force asynchronous diffusion model[J]. Computer Animation and Virtual Worlds. 2011. 22(2/3): 251-259. 被引量:1
  • 9Chen F. Gu L, Huang P. et al . Soft tissue modeling using nonlinear mass spring and simplified medial representation[CJ II Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Piscataway: IEEE EMBS Press. 2007: 5083-5086. 被引量:1
  • 10Yuan X. Zhong F. Zhang Y 1. et ai. Automatic segmentation of head and shoulder images by combining edge features and shape prior[CJ II Proceedings of the 12th International Conference on Computer-Aided Design and Computer Graphics. Los Alamitos: IEEE Computer Society Press. 2011: 163-170. 被引量:1

引证文献7

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部