摘要
This work deals with the influence of thermal radiation on the problem of the mixed convection thin film flow and heat transfer of a micropolar fluid past a moving infinite vertical porous flat plate with a slip velocity. The fluid viscosity and the thermal conductivity are assumed to be the functions of temperature. The equations governing the flow are solved numerically by the Chebyshev spectral method for some representative value of various parameters. In comparison with the previously published work, the excellent agreement is shown. The effects of various parameters on the velocity, the microrotation velocity, and the temperature profiles, as well as the skin-friction coefficient and the Nusselt number, are plotted and discussed.
This work deals with the influence of thermal radiation on the problem of the mixed convection thin film flow and heat transfer of a micropolar fluid past a moving infinite vertical porous flat plate with a slip velocity. The fluid viscosity and the thermal conductivity are assumed to be the functions of temperature. The equations governing the flow are solved numerically by the Chebyshev spectral method for some representative value of various parameters. In comparison with the previously published work, the excellent agreement is shown. The effects of various parameters on the velocity, the microrotation velocity, and the temperature profiles, as well as the skin-friction coefficient and the Nusselt number, are plotted and discussed.