期刊文献+

基于增量学习的关节式目标跟踪算法 被引量:3

Articulated Object Tracking Algorithm Based on Incremental Learning
下载PDF
导出
摘要 为实现对关节式目标的稳定跟踪,提出了基于增量学习的关节式目标跟踪算法.该算法应用图割法对目标矩形窗进行前景与背景分割,得到前景图像;然后对前景图像进行快速傅里叶变换,得到傅里叶系数矩阵,进而得到振幅图像,并将振幅图像作为跟踪目标的描述;最后将多个目标描述进行奇异值分解和主元分析,实现对跟踪目标的低维子空间描述.文中在粒子滤波框架下实现了整个跟踪算法.实验结果表明,该算法具有较稳定的关节式目标跟踪效果. In order to realize stable articulated object tracking,an algorithm based on incremental learning is proposed.In this algorithm,the graph-cut algorithm is used to obtain a foreground image by segmenting the rectangular object region,and a fast Fourier transform is conducted for the foreground image to obtain the Fourier coefficient matrix and to further acquire the amplitude image as the description of the tracking object.Then,the low-dimension subspace representation of the tracking object is obtained by the singular value decomposition and the principle component analysis of the amplitude image.Thus,the tracking algorithm is realized in the framework of particle filtering.Experimental results indicate that the proposed algorithm helps to achieve stable articulated object tracking.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第3期88-93,共6页 Journal of South China University of Technology(Natural Science Edition)
基金 国家自然科学基金重点项目(60736024 60574004 61174053) 教育部科技创新工程重大项目(7080690)
关键词 目标跟踪 增量学习 子空间描述 快速傅立叶变换 奇异值分解 粒子滤波 object tracking incremental learning subspace representation fast Fourier transforms singular value decomposition particle filtering
  • 相关文献

参考文献15

  • 1Yilmaz A,Javed O,Shah M.Object tracking:a survey[J].ACM Computer Surveys,2006,38(4):229-240. 被引量:1
  • 2Puri A,Valavanis K P,Kontitsis M.Statistical profile ge-neration for traffic monitoring using real-time UAV basedvideo data[C]∥Proceedings of Mediterranean Confe-rence on Control and Automation.Athens:IEEE,2007:1-6. 被引量:1
  • 3Birchfield S T,Sriram Rangarajan.Spatiograms versus his-tograms for region-based tracking[C]∥Proceedings ofIEEE Computer Society Conference on Computer Visionand Pattern Recognition.San Diego:IEEE,2005:1158-1163. 被引量:1
  • 4Thi Y,Vaswani N,Tannenbaum A,et al.Tracking defor-ming objects using particle filtering for geometric activecontours[J].IEEE Transactions on Pattern Analysis andMachine Intelligence,2007,29(8):1470-1475. 被引量:1
  • 5Wang Yong,Tan Yihua,Tian Jinwen.Adaptive hybridlikelihood model for visual tracking based on Gaussianparticle filter[J].Optical Engineering,2010,47(9):1-8. 被引量:1
  • 6Jepson A D,Fleet D J,El-Maraghi T F.Robust online ap-pearance models for visual tracking[J].IEEE Transac-tions on Pattern Analysis and Machine Intelligence,2003,25(10):1296-1311. 被引量:1
  • 7Black M J,Jepson A D.Eigentracking:robust matchingand tracking of articulated objects using a view-based re-presentation[C]∥Proceedings of European Conferenceon Computer Vision.Cambridge:Springer-Verlag,1996:329-342. 被引量:1
  • 8Turk M A,Pentland A P.Face recognition using eigenfaces[C]∥Proceedings of IEEE Computer Society Conferenceon Computer Vision and Pattern Recognition.Maui:IEEE,1991:586-591. 被引量:1
  • 9Ross D,Lim Jongwoo,Lin R,et al.Incremental learningfor robust visual tracking[J].International Journal ofComputer Vision,2008,77(1):125-141. 被引量:1
  • 10Dong Y,De Souza G N.Adaptive learning of multi-sub-space for foreground detection under illumination chan-ges[J].Computer Vision and Image Understanding,2011,115(1):31-49. 被引量:1

同被引文献32

  • 1杨琨,曾立波,王殿成.数学形态学腐蚀膨胀运算的快速算法[J].计算机工程与应用,2005,41(34):54-56. 被引量:43
  • 2Soga M, Hiratsuka S, Fukamachi H, et al. Pedestrian de- tection for a near infrared imaging system [ C ]//Procee- dings of IEEE Conference on Interhgent Transportation Systems. Beijing : IEEE, 2008 : 1167-1172. 被引量:1
  • 3Ger6nimo D, L6pez A M, Sappa A D, et al. Survey of pe- destrian detection for advanced driver assistance systems [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence ,2010,32(7 ) : 1239-1258. 被引量:1
  • 4Viola P, Jones M. Rapid object detection using a boosted cascade of simple features [ C ] //Proceedings of IEEEComputer Society Conference on Computer Vision and Pattern Recognition. Kauai : IEEE ,2001:511-518. 被引量:1
  • 5Viola P, Jones M, Snow D, Detecting pedestrians using patterns of motion and appearance [ C ]//Proceedings of IEEE International Conference on Computer Vision. Nice: IEEE,2003:734-741. 被引量:1
  • 6O' Malley R, Jones E, Glavin M. Detection of pedestrians in far-infrared automotive night vision using region-gro- wing and clothing distortion compensation [ J]. Infrared Physics & Technology ,2010,53 (6) :439-449. 被引量:1
  • 7Ge J F, Luo Y P, Tei G. Real-time pedestrian detection and tracking at nighttime for driver-assistance systems [J]. IEEE Transactions on Intelligent Transportation Sys- tems ,2009,10 (2) :283-298. 被引量:1
  • 8Bertozzi M, Broggi A, Gomez C H, et al. Pedestrian detec- tion in far infrared images based on the use of probabilis- tic templates [ C ] //Proceedings of 1EEE Intelligent Vehi- cles Symposium. Istanbul : IEEE,2007 : 327- 332. 被引量:1
  • 9Sun H,Wang C, Wang B L, et al. Pyramid binary pattern features for real-time pedestrian detection from infrared videos[J].Neurocomputing, 2011,74 ( 5 ) :797- 804. 被引量:1
  • 10Gavrila D M. A bayesian, exemplar-based approach to hierarchical shape matching [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(8) :1408-1421. 被引量:1

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部