期刊文献+

由线性算子定义的多叶函数的新子类 被引量:3

New Certain Subclass of Multivalent Functions Defined by Linear Operators
下载PDF
导出
摘要 运用线性算子和从属关系定义了p-叶解析函数的一个新子类.讨论了该类的系数不等式,偏差定理,δ-邻域性质,卷积性质,推广了某些作者的相关结果. In this paper a new subclass of p-valent analytic functions is defined by use of a certain linear operator and subordinate condition. The research provides coefficient inequalities, distortion theorem, properties of neighborhood and convo- lution properties of this subclass, and the results presented here would provide extensions of those given by other authors.
出处 《河南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第2期1-7,共7页 Journal of Henan Normal University(Natural Science Edition)
基金 内蒙古自然科学基金(2009MS0113)
关键词 线性算子 解析函数 系数不等式 邻域 卷积 分数次积分算子 linear operator analytic function coefficient inequalities neighborhood of analytic function hadarmard product fractional calculus operators
  • 相关文献

参考文献12

  • 1Saitoh H . A linear operator and its applications of first order differential subordinations [J]. Math Japon, 1996,44(1):31-38. 被引量:1
  • 2Aouf M K, Silverman H, Srivastava H M. Some families of linear operators associated with certain subclasses of multivalent functions [J]. Computers and Mathematics with Applications, 2008,55 (3) : 535-549. 被引量:1
  • 3Aouf M K. A generalization of multivalent functions with negative coefficients. Ⅱ [J]. Bull Korean Math Soc,1988,25(2) :221-232. 被引量:1
  • 4Aouf M K. Certain classed of p-valent functions with negative coefficients. Ⅱ [J]. Indian J Pure Appl Math, 1988,19(8):761-767. 被引量:1
  • 5Gupta V P, Jain P K. Certain classes of univalent functions with negative coefficients. Ⅱ [J]. Bull Austral Math Soc, 1976,14:467-473. 被引量:1
  • 6Lee S K, Owa S, Srivastavs H M. Basic properties and characterizations of a certain class of analytic functions with negative coefficients [J]. Utilitas Math, 1989,36 :121-128. 被引量:1
  • 7Aouf M K. Darwish H E. Some classes of multivalent functions with negative coefficients. I [J]. Honam Math J, 1994,116(1) :119-135. 被引量:1
  • 8Uralegaddi B A, Sarangi S M. Some classes of univalent functions with negative coefficients [J]. An Stiint Univ AII Cuza Lasi Sect I a Mat (N S),1988(2):347-351. 被引量:1
  • 9Bernardi S D. Convex and starlike univalent functions [J]. Trans Amer Math Soc, 1969,135:429-446. 被引量:1
  • 10Owa S. On distortion theorems. I [J]. Kyungpook Math J,1978,18:55-59. 被引量:1

同被引文献39

  • 1蒋润荣.一个单叶解析函数族的推广[J].四川师范大学学报(自然科学版),1994,17(1):30-35. 被引量:1
  • 2高纯一.近于凸函数族的Fekete-Szegǒ问题[J].数学年刊(A辑),1994,1(6):650-656. 被引量:33
  • 3Srivastava H M, Mishra A K, Goehhayat P. Certain subclasses of analytic and bi-univalent functions[J]. Appl Math Lett,2010,23(10) : 1188-1192. 被引量:1
  • 4Lewin M. On a coefficient problem for bi-univalent functions[J]. Proc Amer Math Soc, 1967,18(1):63-68. 被引量:1
  • 5Brannan D A, Clunie J G. Aspects o{ Contemporary Complex Analysis[C]. Proceedings of the NATO Advanced Study Institute,Dur- ham,1979. 被引量:1
  • 6Netanyahu E. The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in [z[[J] Arch Rational Mech Anal, 1969,32 (2) .. 100-112. 被引量:1
  • 7Frasin B A, Aouf M K. New subclasses of bi-univalent functions[J]. Appl Math Lett,2011,24(9):1569-1573. 被引量:1
  • 8Xu Q H, Gui Y C, Srivastava H M. Coefficient estimates for a certain subclass of analytic and bi-univalent functions[J]. Appl Math Lett,2012,25(6) :990-994. 被引量:1
  • 9Ding S S, Ling Y, Bao G J. Some properties of a class of analytic functions[J]. J Math Anal Appl,1995,195(1) :71-81. 被引量:1
  • 10Hallenbeck D J, MacGregor T H. Linear Problems and Convexity Techniques in Geometric Function Theory[M]. Boston: Pitman Ad- vanced Publishing Program, 1984 12-13. 被引量:1

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部