期刊文献+

Ni/Al_2O_3催化甲烷裂解

The Methane Catalytic Decomposition over Ni/Al_2O_3
下载PDF
导出
摘要 分别通过浸渍法和共沉淀法制备了不同Ni负载量的Ni/Al2O3催化剂。考察了Ni负载量、制备方法以及反应温度对Ni/Al2O3催化甲烷裂解性能的影响。结果表明,在550℃,浸渍法制备的Ni/Al2O3催化剂,当Ni负载量为20%(质量分数)、Ni金属平均粒径为11.25 nm时,具有最佳的甲烷催化裂解效果,其每摩尔Ni的氢气产量和每克Ni碳产量分别为164 mol和15.30 g。催化剂制备方法对Ni/Al2O3甲烷催化裂解反应有显著影响,相同Ni负载量共沉淀法制备的Ni/Al2O3甲烷催化裂解总体效果要好于浸渍法制备的Ni/Al2O3,而且反应过程中生成的碳纤维较长,管径也较均一。550℃时,共沉淀法制备的Ni负载量为41.2%(质量分数)的Ni/Al2O3催化剂在反应至350 min时,仍保持着30%以上的转化率。 Ni/Al2O3 catalysts have been prepared through either impregnation or coprecipitation methods.The effects of Ni loading,preparation method and reaction temperature on the methane catalytic decomposition have been investigated.The results indicated that 20%(mass fraction) Ni/Al2O3 of which the average particle size of Ni was about 11.25 nm showed the best catalytic performance among the impregnated catalysts.The yields of carbon for per gram Ni and hydrogen for per mole Ni on such catalyst were 15.30 g and 164 mol,respectively.On the coprecipitated Ni/Al2O3,both the catalytic activity and lifespan of catalyst were improved.The deposited filamentous carbon over coprecipitated Ni/Al2O3 was much longer and more homogeneous than that generated over impregnated Ni/Al2O3.The methane catalytic conversion on coprecipitated Ni/Al2O3(41.2% mass fraction)remained higher than 30% after running the reaction at 550 ℃ up to 350 min.
出处 《应用化学》 CAS CSCD 北大核心 2012年第5期537-544,共8页 Chinese Journal of Applied Chemistry
基金 中国工程物理研究院科学技术发展基金(2007A02003)资助项目
关键词 NI/AL2O3 催化甲烷裂解 氢气 碳纤维 Ni/Al2O3 methane catalytic decomposition hydrogen carbon filaments
  • 相关文献

参考文献16

  • 1Takenaka S,Shigeta Y,Tanabe E,et al.Methane Decomposition into Hydrogen and Carbon Nanofibers over SupportedPd-Ni Catalysts[J].J Catal,2003,220(2):468-477. 被引量:1
  • 2张志,陆光达,唐涛,秦城,黄火根,郑少涛,宋江峰.Ni/氧化金刚石催化裂解甲烷制氢技术研究[J].材料导报,2007,21(F05):270-273. 被引量:5
  • 3张志,唐涛,陆光达,秦城,黄火根,宋江峰,郑少涛.催化裂解甲烷制备氢气和碳纳米纤维[J].应用化学,2008,25(2):245-250. 被引量:7
  • 4Song H,Zhang L,Ozkan U S.Effect of Synthesis Parameters on the Catalytic Activity of Co ZrO2 for Bioethanol SteamReforming[J].Green Chem,2007,9(6):686-694. 被引量:1
  • 5Guevara J C,Wang J A.Ni/Ce-MCM-41 Meso-structured Catalysts for Simultaneous Production of Hydrogen and Nanocar-bon via Methane Decomposition[J].Int J Hydrogen Energy,2010,35(8):3509-3521. 被引量:1
  • 6Glugla M,Murdoch D K,Geiβler H,et al.Design of a Catalytic Exhaust Clean-up Unit for ITER[J].Fusion Eng Des,1998,39/40(1):893-899. 被引量:1
  • 7Bornschein B,Glugla M,Günther K,et al.Tritium Tests with a Technical PERMCAT for Fnal Clean-up of ITER ExhaustGases[J].Fusion Eng Des,2003,69(1/4):51-56. 被引量:1
  • 8Glugla M,Antipenkov A,Beloglazov S.The ITER Tritium Systems[J].Fusion Eng Des,2007,82(5/14):472-487. 被引量:1
  • 9Ermakova M A,Ermakov D Y,Kuvshinov G G,et al.New Nickel Catalysts for the Formation of Filamentous Carbon in theReaction of Methane Decomposition[J].J Catal,1999,187(1):77-84. 被引量:1
  • 10Takenaka S,Kobayashi S J,Ogihara H,et al.Ni/SiO2 Catalyst Effective for Methane Decomposition into Hydrogen andCarbon Nanofiber[J].J Catal,2003,217(1):79-87. 被引量:1

二级参考文献39

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部