期刊文献+

基于集团序推荐输出的协同过滤推荐算法

Collaborative filtering recommendation algorithm based on aggregative rank recommendation output
下载PDF
导出
摘要 针对电子商务推荐系统传统项目相似性计算不足和传统的TOP-N推荐输出缺乏个性等问题,提出了一种改进算法.该算法采用动态生成权重因子的方法计算项目相似性,利用模糊聚类对项目分类,在预测评分公式中引入用户权重因子,并采用集团序方法进行推荐输出以确定候选的N值.实验结果表明,该算法不仅解决了数据稀疏性问题,提高了系统的推荐质量,且推荐结果更个性化. Aiming at the problem that traditional item similarity of e-commerce recommedation system has shortage in calculation and the recommedation output of TOP-N lacks personalization,an improvement algorithm was put forword.This algorithm calculates item similarity using dynamic weigh factor method,classifies items using fuzzy clustering,introduces user weigh factor in forecasting evaluation formula and carries out recommendation output to confirm candidate N value.The experimental results showed that this algorithm not only solved the problem of sparse data and improved the recommendation quality and enhanced the recommendation personalized degree.
出处 《郑州轻工业学院学报(自然科学版)》 CAS 2012年第2期80-83,共4页 Journal of Zhengzhou University of Light Industry:Natural Science
关键词 协同过滤推荐算法 模糊聚类 集团序 项目相似性计算 collaborative filtering recommendation algorithm fuzzy clustering aggregative rank item similarity calculation
  • 相关文献

参考文献8

二级参考文献49

  • 1王辉,高利军,王听忠.个性化服务中基于用户聚类的协同过滤推荐[J].计算机应用,2007,27(5):1225-1227. 被引量:43
  • 2贺仲雄.模糊数学及其应用[M].天津:天津科学出版社,1984.. 被引量:11
  • 3Lee J S,Jun C H,Lee J,et al.Classification-based collaborative filtering using market basket data [J]. Expert System with Applications,2005,29(3 ):700-704. 被引量:1
  • 4Velasquez Juan D,Palade Vasile.Building a knowledge base for implementing a web based computerized recommendation system [J]. International Journal on Artificial Intelligence Tools, 2007,16(5):793-828. 被引量:1
  • 5Makoto Iguchi,Shigeki Goto.Anonymous P2P web browse history sharing for web page recommendation[J].IEICE Trans Inf& Syst,2007,E90-D(9): 1343-1353. 被引量:1
  • 6Segrera Saddys,Moreno Maria.Application of multiclassifiers in web mining for a recommender system[J]. Maria N. WSEAS Transactions on Information Science and Applications, 2006,3 (12):2471-2476. 被引量:1
  • 7Adomavicius G, Tuzhilin A.Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions[J].IEEE Trans on Knowledge and Data Engineering, 2005,17(6):734-749. 被引量:1
  • 8Ahn H J.A new similarity measure for collaborative filtering to alleviate the new user cold-starting problem [J]. Information Sciences,2008,178(1):37-51. 被引量:1
  • 9SARWAR B,KARYPIS G KONSTAN J.Item-based collaborative filtering recommendation algorithms [C].Proc of the 10th International Conference on World Wide Web. New York: ACM Press,2001:285-295. 被引量:1
  • 10Brccsc J, Hcchcrman D, Kadic C. Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI'98). 1998.43~52. 被引量:1

共引文献664

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部