期刊文献+

基于加权边界度的稀有类检测算法 被引量:6

Rare Category Detection Algorithm Based on Weighted Boundary Degree
下载PDF
导出
摘要 提出了一种快速的稀有类检测算法——CATION(rare category detection algorithm based on weightedboundary degree).通过使用加权边界度(weighted boundary degree,简称WBD)这一新的稀有类检测标准,该算法可利用反向k近邻的特性来寻找稀有类的边界点,并选取加权边界度最高的边界点询问其类别标签.实验结果表明,与现有方法相比,该算法避免了现有方法的局限性,大幅度地提高了发现数据集中各个类的效率,并有效地缩短了算法运行所需要的运行时间. This paper proposes an efficient algorithm named CATION(rare category detection algorithm based on weighted boundary degree) for rare category detection.By employing a rare-category criterion known as weighted boundary degree(WBD),this algorithm can make use of reverse k-nearest neighbors to help find the boundary points of rare categories and selects the boundary points with maximum WBDs for labeling.Extensive experimental results demonstrate that this algorithm avoids the limitations of existing approaches,has a significantly better efficiency on discovering new categories in data sets,and effectively reduces runtime,compared against the existing approaches.
出处 《软件学报》 EI CSCD 北大核心 2012年第5期1195-1206,共12页 Journal of Software
基金 教育部-英特尔信息技术专项科研基金(MOE-INTEL-11-06)
关键词 稀有类检测 边界点检测 加权边界度 K近邻 反向k近邻 rare category detection boundary point detection weighted boundary degree k-nearest neighbor reverse k-nearest neighbor
  • 相关文献

参考文献3

二级参考文献43

  • 1邱保志,沈钧毅.网格聚类中的边界处理技术[J].模式识别与人工智能,2006,19(2):277-280. 被引量:13
  • 2邱保志,沈钧毅.基于扩展和网格的多密度聚类算法[J].控制与决策,2006,21(9):1011-1014. 被引量:25
  • 3Han Jiawei, Kamber M. Data Mining : Concepts and Techniques. Orlando, USA: Morgan Kaufmann Publishers, 2001. 被引量:1
  • 4Xia Chenyi, Hsu W, Lee M L, et al. BORDER: Efficient Computation of Boundary Points. IEEE Trans on Knowledge and Data Engineering, 2006, 18(3) : 289 -303. 被引量:1
  • 5Hsu C M, Chen M S. Subspace Clustering of High Dimensional Spatial Data with Noises// Proc of the Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining. Sydney, Australia, 2004:31 -40. 被引量:1
  • 6Breunig M M, Kriegel H P, Ng R T, et al. LOF: Identifying Density-Based Local Outliers// Proc of the ACM SIGMOD International Conference on Management of Data. Dalles, USA, 2000:93 - 104. 被引量:1
  • 7Karypis G, Ham E H, Kumar V. Chameleon : A Hierarchical Clustering Algorithm Using Dynamic Modeling. IEEE Computer, 1999, 32 (8) : 68 -75. 被引量:1
  • 8Han Jia-Wei,Kamber Micheline Data Mining:Concepts and Techniques (2nd Edition).San Francisco:Morgan Kaufmann Publishers,2006 被引量:1
  • 9Hawkins D.Identification of Outliers.London:Chapman and Hall,1980 被引量:1
  • 10Knorr E,Ng R.Algorithms for mining distance-based outliers in large datasets//Proceedings of the 24th VLDB Conference.New York,1998:392-403 被引量:1

共引文献142

同被引文献77

  • 1He Hai-bo,Garcia,Edwardo A. Learning from imbalanced Data [J]. IEEE Transactions on Knowledge and Data Engineering, 2009,21 (9) : 1263-1284. 被引量:1
  • 2Fawcett T, Provost F. Combining Data Mining and Machine Learning for Effective User Profile[C]//Proceedings of 2nd In- ternational Con/erence on Know/edge Discovery and Data Min- ing. Portland, Oregon, USA, 1996 : 8-13. 被引量:1
  • 3Ezawa K J, Singh M, Norton S W. Learning Goal Oriented Bayesian Networks for Telecommunications Risk Management [C] // Proceedings of the International Conference on Machine Learning. Bari, Italy, 1996 : 139-147. 被引量:1
  • 4Zheng Zhaohui, Wu Xiaoyun, Srihari Rohini. Feature Selection for Text Categorization on Imbalanced Data[J]. SIGKDD Ex- plorations, 2004,6 (1) : 80-89. 被引量:1
  • 5Breiman L. Baggixag predictors[J]. Machine Learning, 1996,24 (2) : 123-140. 被引量:1
  • 6Freund Y, Schapire R F. A decision-theoretic generalization of on-line learning and an application to boosting[J]. Journal of Computer and System Sciences, 1997,55 (1) : 119-139. 被引量:1
  • 7Breiman L. Random forests[J]. Machine learning, 2001,45 (1): 5-32. 被引量:1
  • 8Rodriguez J J, Kuncheva L I, Alonso C J. Rotation Forest: A new classifier ensemble method [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006,28 ( 10 ) : 1619-1630. 被引量:1
  • 9Sun Yan-min,Mobamed S K,Wong A K C. Cost-sensitive boos- ting for classification of imbalanced data[J]. Pattern Recogni- tion, 2007,40(12) : 3358-3378. 被引量:1
  • 10Chawla N V, Bowyer K W, Hall L O, et al. SMOTE: Synthetic Minority Over-Sampling Technique[J]. Journal of Artificial In- telligence Research, 2002,16 : 321-357. 被引量:1

引证文献6

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部