摘要
讨论平面上由整数扩张矩阵M=[a b d c],det(M)=ac-bd∈2Z和数字集D={(00),(m0),(nk1),(lk2)}(m≠0,n,l∈Ζ,k1,k2∈2Ζ+1)决定的L2(μM,D)中无限正交系的存在性,及由M=(2 b 0 2),b∈Z,D={(00),(10),(01),(k1k2)}决定的μM,D是否是谱测度.
The existence of infinite orthogonal exponential functions for the space L2(μM,D) determined by the integer expanding matrix M=[abdc],det(M)=ac-bd∈2Z and the digit set D={(00),(m0),(nk1),(lk2)}(m≠0,n,l∈Ζ,k1,k2∈2Ζ+1) are discussed.In addition,whether or not μM,D is spectral measure determined by the matrix M=(2b02),b∈Z and the digit set D={(00),(10),(01),(k1k2)} are discussed as well
出处
《纺织高校基础科学学报》
CAS
2012年第1期67-70,82,共5页
Basic Sciences Journal of Textile Universities
关键词
吸引子
自仿测度
谱测度
标准数字集
attractor self-affine measure spectral measure standard digit set