期刊文献+

一种扩展的条件模糊C-均值聚类算法

Extended conditional fuzzy C-means clustering algorithm
下载PDF
导出
摘要 在综合分析标准的模糊C-均值聚类算法和条件模糊C-均值聚类算法基础上,对模糊划分空间进行修改,进一步弱化模糊划分矩阵的约束,给出一种扩展的条件模糊C-均值聚类算法。算法的划分矩阵和原型不依赖于背景约束及模糊划分矩阵的隶属度总和。实验结果表明:该算法可以得到不同的聚类原型,并具有很好的聚类效果。 Synthesizing and analyzing the standard Fuzzy CMeans (FCM) clustering algorithm and conditional FCM clustering algorithm, the fuzzy partition space is modified, and the constraints of fuzzy partition matrix are weakened, this paper proposes an extended conditional FCM clustering algorithm. The partition matrix and proto types of the proposed algorithm do not rely on the context constraints and the total membership of fuzzy partition matrix. Experimental results show that the proposed algorithm can produce different clustering prototypes, and has excellent clustering performance.
作者 曾振东
出处 《计算机工程与应用》 CSCD 2012年第13期22-26,共5页 Computer Engineering and Applications
基金 广东省教育部产学研重点项目(No.2011A090200068) 广东省自然科学基金(No.9151009001000043)
关键词 模糊C_均值聚类(FCM) 条件模糊C-均值聚类(CFCM) 模糊划分矩阵 Fuzzy C-Means (FCM) clustering Conditional Fuzzy C-Means(CFCM) clustering fuzzy partition matrix
  • 相关文献

参考文献16

  • 1Ruspini E H.A new approach to clustering[J].Inf Count,1969,15(1):22-32. 被引量:1
  • 2Dunn J C.Well-separated clusters and the optimal fuzzy partitions[J].J Cybernet,1974,4:95-104. 被引量:1
  • 3Bezdek J C.Pattern recognition with fuzzy objective function alogrithms[M].New York:Plenum Press,1981. 被引量:1
  • 4Miyamoto S,Ichihashi H,Honda K.Algorithms for fuzzy clustering:methods in C-means clustering with applica-tions[M].Berlin:Springer,2008. 被引量:1
  • 5Selim S Z,Ismail M A.Soft clustering of multidimen-sional data:a semi-fuzzy approach[J].Pattern Recogni-tion,1984,17(5):559-568. 被引量:1
  • 6Kamel M S,Selim S Z.A thresholded fuzzy c-means al-gorithm for semi-fuzzy approach[J].Pattern Recognition,1991,24(9):825-833. 被引量:1
  • 7Krishnapuram R,Kill J M.A possibilistic approach to clustering[J].IEEE Trans Fuzzy System,1993,1(2):98-110. 被引量:1
  • 8Pedrycz W.Conditional fuzzy C-means[J].Pattern Recog-nition Letters,1996,17:625-632. 被引量:1
  • 9Pedrycz W.Knowledge-based clustering:from data to information granules[M].[S.l.]:John Wiley&Sons,Inc,2005. 被引量:1
  • 10鲁卿,冯金富,李骞,钟咏兵.新型SFCM算法及其在故障诊断中的应用[J].计算机工程与应用,2007,43(35):239-242. 被引量:1

二级参考文献12

  • 1张国新,刘祚时.轴承故障的模糊聚类方法[J].江西理工大学学报,2006,27(4):15-17. 被引量:6
  • 2谢季军,刘承平.模糊数学方法应用[M].武汉:华中科技大学出版社,2000:58-118. 被引量:1
  • 3Kamel M S,Sclim S Z.A threshold fuzzy C-means algorithm for semi-fuzzy clustering[J].Pattern Recognition,1991,24(9):825-833. 被引量:1
  • 4Mohamed N A,Ahmed M N,Fang A.Modified fuzzy c-mean in medical image segmentation[C] //IEEE International Conference on Acoustics,Speech,and Signal Processing,1999:3429-3432. 被引量:1
  • 5Li Jie,Gao Xin-bo,Ji Hong-bing.A feature weighted FCM clastering algorithm based on evolutionary strategy[C] //IEEE Proceedings of the 4th World Congress on Intelligent Control and Automation,2002,10(14):1549-1553. 被引量:1
  • 6Bezdek J C.Pattern recongnition with fuzzy objective function algorithms[M].New York: Plenum Press, 1981. 被引量:1
  • 7Kamel M S,Selim S Z.A threshold fuzzy c-means algorithm for semi-fuzzy clustering[J].Pattern Recognition,1991,24(9):825-833. 被引量:1
  • 8Selim S Z,Ismail M A.Sofl clustering of multidimensional data:a semi-fuzzy approach[J].Pattem Recognition, 1984,17(5 ) :559-568. 被引量:1
  • 9蔡梅艳,吴庆宪,姜长生.改进Otsu法的目标图像分割[J].电光与控制,2007,14(6):118-119. 被引量:48
  • 10鲁卿,冯金富,聂光戍,李骞.一种基于半模糊聚类的故障诊断方法[J].测试技术学报,2007,21(6):551-556. 被引量:6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部