期刊文献+

基于正负相位和奇异点偶识别规则的煤矸识别技术对比研究 被引量:1

Conclusions compared using Singularity-point Couple JR and Positive-negative Phase JR for distinguishing rock from coal
下载PDF
导出
摘要 采用数字信号处理技术对煤和矸石撞击刮板运输机产生的振动信号进行适当处理,可以完成煤矸实时识别,即时做出对液压支架的控制。文章对所采集到的放煤阶段产生的5组振动信号,分别采用时域一阶差分分析和小波域内模系数极大法分析。在时域内定义了振动信号的正负相位概念,在小波域内定义了正向、负向奇异点偶概念。由所定义的正负相位和奇异点偶概念分别导出煤和矸石识别规则,以实现动态的煤矸自动识别操作。从可靠性和算法的高效性看,正负相位法识别规则优于奇异点偶法识别规则。从深层数据规律看,奇异点偶法识别规则优于正负相位法识别规则。 Using digital signal processing technology to process the vibration signals of coal and stone bumping the conveyer, we can control the hydraulic support instantly according to the identification results of real - time distinguishing rock from coal. In this paper, five groups of vibration signals sampled with the speed 250k samples/sec during caving are analyzed by the wavelet transform modulus - maxima method and the first order forward difference(FOFD) method respectively. We define the concept of Singularity - point Couple in wavelet domain and the concept of Positive - negative Phase in time domain based upon the characteristics of vibration signals in different analyzed domain. Based upon the concept of Singularity - point Couple and Positive - negative Phase, the Judgement Rule(JR) for distinguishing rock from coal is proposed individually in two domain to identify rock from coal automatically. From the efficiency and reliability of JR, the Positive - negative Phase JR is superior to the Singularity - point Couple JR. From the perspective laws of the analyzed data, the Singularity - point Couple JR is better than the Positive - negative Phase JR.
作者 李旭 顾涛
出处 《华北科技学院学报》 2012年第1期21-24,共4页 Journal of North China Institute of Science and Technology
基金 河北省科学技术研究与发展指导计划项目(项目编号07213567)
关键词 煤矸振动信号 小波变换 一阶前向差分 奇异点偶 正负相位 识别规则 Coal - Stone Vibration signal wavelet transform FOFD Singularity - point Couple Positive - negative Phase Judgement Rule
  • 相关文献

参考文献10

  • 1李旭,顾涛.基于差分-小波变换模系数极大法的煤矸振动信号研究[J].煤矿开采,2011,16(5):11-14. 被引量:3
  • 2李旭,顾涛.煤矸振动信号小波奇异性-Fisher判别规则研究[J].计算机工程与设计,2011,32(5):1800-1803. 被引量:3
  • 3C. J. Kicey,C. J. Lennard.Unique reconstruction of band-limited signals by a Mallat-Zhong wavelet transform algorithm[J].The Journal of Fourier Analysis and Applications.1997(1) 被引量:1
  • 4Asfahani J,Borsaru M.Low-activity spectrome-tric gamma-ray logging technique for delineationof coal/rock interfaces in dry blast holes[].AP-PLIED RADIATION AND ISOTOPES. 被引量:1
  • 5GU TAO,LI XU.New equipment of distinguishingrock from coal based on statistical analysis of fastfourier transform. WRI Global Congress onIntelligent Systems,May 19-21,2009 . 2009 被引量:1
  • 6Stephane Mallat,Wen Liang Hwang.Singularity detection and processing with wavelets[].IEEE Transactions on Information Theory.1992 被引量:1
  • 7Ren F,Yang ZJ,Xiong SB,et al.Application and research of mul-ti-sensor data mining and fusion technique in the coal-rock inter-face recognition system[].th International Symposium on Testand Measurement.2005 被引量:1
  • 8LIXu,GUTao.New Technique of Distinguishing Rock from CoalBased on Statistical Analysis of Wavelet Transform[].Proceedings of SPIE the International Society for Optical Engineering.2009 被引量:1
  • 9AVTOMATGORMASH.Coal-rock interface moningmethod[].Patent Number SU-b. 被引量:1
  • 10Mallat S A.Theory of multiresolution signal decomposition: the wavelet representation[].IEEE Transactions on Pattern Analysis and Machine Intelligence.1989 被引量:1

二级参考文献28

  • 1于师建,刘家琦.煤岩界面弱反射波小波多分辨分析[J].岩石力学与工程学报,2005,24(18):3224-3228. 被引量:9
  • 2于凤英,田慕琴,胡金发.基于神经网络的煤岩界面识别[J].机械工程与自动化,2007(4):4-6. 被引量:7
  • 3AVTOMATGORMASH (SU), Coal-rock interface moning method[P].Patent Number:SU891914-b. 被引量:1
  • 4Asfahani J, Borsaru M. Low-activity spectrometric gamma-ray logging technique for delineation of coal/rock interfaces in dry blast holes [C]. Applied Radiation and Isotopes, 2007,65 (6): 748-755. 被引量:1
  • 5Ren F, Yang ZJ,Xiong SB,et al.Application and research of multi-sensor data mining and fusion technique in the coal-rock inter- face recognition system[C].6th International Symposium on Test and Measurement,2005:311-314. 被引量:1
  • 6GU Tao,LI Xu.New Equipment of distinguishing rock from coal based on statistical analysis of fast Fourier transform[C] .Global Congress on Intelligent Systems,2009:269-273. 被引量:1
  • 7LI Xu,GU Tao.New technique of distinguishing rock from coal based on statistical analysis of wavelet transform [C]. Proc of SPIE,2009. 被引量:1
  • 8Vivek Kumar, Mani Mehra.Wavelet optimized finite difference method using interpolating wavelets for solving singularly perturbed problems[J].Joumal of Wavelet Theory and Applications, 2007,1(1):83-96. 被引量:1
  • 9Mostafa Sedighizadeh, Alireza Rezazadeh. Nonlinear model identification and pi control of wind turbine using neural network adaptive frame wavelets[J].Journal of Wavelet Theory and Applications,2009,3(1):73-88. 被引量:1
  • 10Gopalakrishnan S,Mira Mitra.Wavelet methods for dynamical problems: with application to metallic, composite, and nanocomposite structures[M].CRC Press,2010. 被引量:1

共引文献4

同被引文献25

引证文献1

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部