期刊文献+

Adaptive associative classification with emerging frequent patterns

Adaptive associative classification with emerging frequent patterns
下载PDF
导出
摘要 In this paper, we propose an enhanced associative classification method by integrating the dynamic property in the process of associative classification. In the proposed method, we employ a support vector machine(SVM) based method to refine the discovered emerging ~equent patterns for classification rule extension for class label prediction. The empirical study shows that our method can be used to classify increasing resources efficiently and effectively.
出处 《High Technology Letters》 EI CAS 2012年第1期38-44,共7页 高技术通讯(英文版)
基金 Supported by the National High Technology Research and Development Program of China (No. 2007AA01Z132) the National Natural Science Foundation of China (No.60775035, 60933004, 60970088, 60903141) the National Basic Research Priorities Programme (No. 2007CB311004) the National Science and Technology Support Plan (No.2006BAC08B06).
关键词 associative classification RULE frequent pattern mining emerging frequent pattern supportvector machine (SVM) 分类方法 关联 频繁模式 自适应 支持向量机 动态属性 分类规则 资源分类
  • 相关文献

参考文献17

  • 1Han J, Kamber M. Data Mining: Concepts and Techniques. Waltham: Morgan Kaufinann, 2005. 被引量:1
  • 2Duda R, E.Hart P, Stork G D. Pattern Classification. Hoboken: Wiley-Interscience, 2001. 被引量:1
  • 3Agrawal R, Imielinski T, Swami A. Mining association roles between sets of items in large databases. In: Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, Washinton D C, USA, 1993. 207-216. 被引量:1
  • 4Han J, Pei J, Yin Y. Mining frequent patterns without candidate generation. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, Dallas, USA, 2000. 1-12. 被引量:1
  • 5Liu B, Hsu W, Ma Y. Integrating classification and association rule mining. In: Proceedings of the 3rd International Conferenceon Knowledge Discovery and Data Mining, Seattle, USA, 1998. 80-86. 被引量:1
  • 6Dong G, Zhang X, Wong L, et al. CAEP: Classification by aggregating emerging patterns. In: Proceedings of the 2nd International Conference on Discovery Science, Tokyo, Japan 1999.30-42. 被引量:1
  • 7Li W, Han J, Pei J. CMAR: Accurate and efficient classification based on multiple class-association rules. In: ProceedIngs of the 2001 IEEE International Conference on Data Mining, San Jose, USA, 2001. 369-376. 被引量:1
  • 8Yin X, Han J. CPAR: Classification based on predictive association rules. In: Proceedings of the 3rd SIAM International Conference on Data Mining, San Franeisco, USA, 2003.331-335. 被引量:1
  • 9Wang J, Karypis G. HARMONY: Efficiently Mining the Best Rules for Classification. In: Proceedings of the 5th SIAM International Conference on Data Mining, Newport Beach, USA, 2005.205-216. 被引量:1
  • 10Veloso A, Meira W, Zaki M J, Lazy associative classification. In: Proceedings of the 6th IEEE International Conference on Data Mining, Hong Kong, China, 2006. 645-654. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部