摘要
稀疏信号恢复是压缩感知的主要研究问题,目前已经取得了非常丰富的成果.而在实际应用中,往往有一些先验信息可以利用,以提高恢复的效率,减少测量次数.本文主要讨论部分支集已知的稀疏或可压缩信号恢复问题,提出了一个松弛零空间条件并且改进了保证信号稳定恢复的限制等距常数界.
This paper studies the recovery of sparse or compressible signals from a certain number of linear measurements when the signal support is partially known.The reconstruction method is based on a convex minimization which minimize the l 1 norm of the signal over the complement of the known part.We propose a relaxed null space condition and give a new bound via restricted isometry constant to guarantee the signal to be recovered stably.
出处
《中国科学:数学》
CSCD
北大核心
2012年第4期313-319,共7页
Scientia Sinica:Mathematica
基金
国家自然科学基金(批准号:11171299
10771190
10971189)
浙江省自然科学基金(批准号:Y6090091
Y6090641)资助项目
关键词
压缩感知
限制等距常数
先验信息
compressive sensing
restricted isometry constants
prior information