期刊文献+

多态T波区间检测技术的研究

Study of Polymorphous T-wave Interval Detection
原文传递
导出
摘要 目的:利用小波变换进行T波区间的检测。方法:在23尺度上通过模极大值法定位R波。在24尺度上首先根据R峰以及T波起点和终点的经验值确定起始T波区间。然后对每个心拍在此区间上找到T波的模极大值,根据模极值的个数和正负顺序确定T波波形的形态。由于不同形态的T波对应不同的T波起点和终点的检测方法,实现T波区间的分类检测,提高T波检测的精确度。由于本文算法是作为T波交替检测的前期工作,为了验证算法的准确率,采用了QT数据库中的部分记录进行了仿真,评价实验结果。结果:仿真实验证明了本文算法能正确地分辨出每个T波的形态,并在此基础上得到较为准确的T波区间。结论:本文采用模极大值算法根据T波的不同形态进行T波区间的分类检测,检测结果比较理想,且计算简单,较易实现。 Objective: To realize the detection of T-wave interval with the Wavelet Transform.Methods: R-peak was located by using modulus maxima algorithm on the 23 scale.According to the R-peak as well as the empirical values of T-wave beginning and T-wave end,the temporary T-wave intervals were identified on the 24 scale.The T-wave modulus maxima pairs of every beat were found in those temporary T-wave intervals.And then the T-wave morphology was determined on the basis of modulus maxima pairs' quantity and plus-minus.As different T-wave morphologies correspond with different detection methods of the T-wave beginning and T-wave end,classification detection of T-wave interval was used to improve the detection accuracy.Because this algorithm is regarded as the pre-liminary work of the T-wave alternans detection,it was evaluated on the QT Database.Results: Simulation results show that this algo-rithm can successfully distinguish the morphology of each T-wave.And T-wave interval detection can be more accurate based on this method.Conclusion: In this article,the modulus maxima algorithm is used to detect the T-wave interval,considering the different T-wave morphologies.Using this algorithm can make simulation results reach our expectation,meanwhile,easy to calculate and to realize.
出处 《现代生物医学进展》 CAS 2012年第6期1160-1163,共4页 Progress in Modern Biomedicine
基金 山东省自然科学基金(ZR2010HM020) 济南市科技发展计划项目(201102005)
关键词 小波变换 模极大值 T波检测 T波形态 ECG Wavelet transform Modulus maxima T-wave detection T-wave morphologies ECG
  • 相关文献

参考文献20

二级参考文献42

  • 1王大雄,王国钧.基于嵌入式微机的便携心电监护仪设计[J].航天医学与医学工程,2005,18(3):196-200. 被引量:11
  • 2李翠微,郑崇勋,袁超伟.ECG信号的小波变换检测方法[J].中国生物医学工程学报,1995,14(1):59-66. 被引量:52
  • 3范晓东,朱泽煌.心电特征点定位算法[J].北京生物医学工程,1996,15(1):15-18. 被引量:13
  • 4王立传,陈裕泉.基于小波变换的QT检测[J].传感技术学报,2006,19(3):625-628. 被引量:10
  • 5杨福生.小波变换的工程分析与应用[M].北京:科学出版社,2000.. 被引量:151
  • 6Eugene Lepeschkin, Borys Surawicz. The Measurement of the Q - T Interval of the Electrocardiogram. Circulation, 1952, 6 : 378 -388. 被引量:1
  • 7Algra A. AnAlgorithm for Computer Measurement of QT intervals in the 24 hour ECG. Computer in Cardiology. IEEE Computer Society Press, 1987 : 117 - 119. 被引量:1
  • 8Li Cuiwei, Zheng Chongxun, Tai Changfeng. Detection of ECG Characteristic Points Using Wavelet Transforms. IEEE Transactions on Biomedical Engineering, 1995, 42 ( 1 ) : 21 - 28. 被引量:1
  • 9Pablo Laguna,Mark RG, Ary Goldberger, et al. A Database for Evaluation of Algorithms for Measurement of QT and Other Waveform Intervals in the ECG. IEEE Computers in Cardiology, 1997, 24 : 673 - 676. 被引量:1
  • 10Open database:The QT Database [database on the Internet]. Cambridge (MA) : PhysioNet. [cited 2006 Aug 27]. Available from: http://www. physionet. org/physiobank/database/qtdb/. 被引量:1

共引文献100

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部