期刊文献+

全息光栅曝光系统中空间滤波器孔径与激光束腰关系的选择方法 被引量:3

The ratio choice method of the pinhole aperture to the waist of the Gaussian laser in the fabrication of holographic gratings
原文传递
导出
摘要 在全息光栅制作过程中,由空气悬浮颗粒及光学器件缺陷引起的散射光会被记录在光刻胶上,既影响光栅衍射效率,又会带来光栅杂散光.为消除系统散射光,需要对激光光束的高频成分进行滤波处理.但是,激光光束通过空间滤波器后发生衍射,进而影响干涉场质量,因此选择合适的空间滤波器孔径是搭建全息光栅曝光系统的前提条件.根据标量衍射积分理论,通过卷积计算滤波光束的振幅分布分析光束的相位变化,以光束相位突变位置远离光束中心为依据确定滤波器针孔半径与光束束腰半径的比值下限;根据滤波光束的能量守恒关系,通过滤波光束的高斯参数变化描述光束的衍射强弱规律,以光束发生衍射的临界条件确定滤波器针孔半径与光束束腰半径的比值上限.结果表明,当空间滤波器针孔半径与激光束腰半径之比满足1.52<a/ω0<2.2时,滤波光束曝光区域相位恒定,光束能量通过率大于99%,在此区间空间滤波器滤波效果最好. In the fabrication of the holographic diffraction gratings, the scatter light which is produced by the reflection of the granule in air or the diffraction defect of the optical apparatus will be recorded simultaneously in the resist. Those noises not only reduce the diffraction efficiency of gratings, but also give rise to the scattered light in diffraction. So an appropriate spatial filter should be used to stop the higher spatial frequencies corresponding to the Gaussian beam. Because the diffraction effect after the pinhole aperture can demolish the wavefronts of laser, it is the most important to choose the optimal pinhole for adjusting the waist of the laser. On the basis of standard scalar diffraction theory, the field amplitude is given by the convolution calculation, the phase distortion of diffraction wavefronts is also analyzed, and the lower limit ratio of the aperture size with respect to the beam radius is given when the phase transitions are further away from the center. Using the energy conservation of Gaussian beam and comparing the characteristics change of diffraction beam, the effect of diffraction is presented and the upper limit ratio of the spatial filter is given by the critical condition of the diffraction. The conclusion shows that if the ratio of the aperture radius to beam waist is between 1.52 〈 a/wo 〈 2.2, the phase is invariable in the area of the exposal, and the power transmitting the spatial-filter pinhole aperture is slightly more than 99%, so spatial filter performs its function only in this range of the radio.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2012年第8期176-182,共7页 Acta Physica Sinica
基金 国家自然科学基金(批准号:60478034) 国家科技支撑计划(批准号:2006BAK03A02) 吉林省科技发展计划(批准号:20070523.20086013)资助的课题~~
关键词 全息光栅 空间滤波器 衍射效应 相位突变 holographic gratings, spatial filter, diffraction effects, phase distortion
  • 相关文献

参考文献2

二级参考文献19

  • 1刘宏展,刘立人,徐荣伟,栾竹,滕树云.近衍射极限半导体激光束波面检测[J].中国激光,2005,32(4):519-522. 被引量:4
  • 2徐世祥,管富义,林尊琪,范滇元.高功率激光系统空间滤波器透镜焦距的选择及其测量[J].中国激光,1996,23(12):1077-1080. 被引量:7
  • 3王桂英 赵九源 张明科 等.钕玻璃高功率激光系统中的空间滤波器的基本研究[J].物理学报,1985,34(2):171-181. 被引量:5
  • 4J. F. Kauffman, The calculated radiation patterns of a truncated Gaussian aperture distribution [C]. IEEE Trans. Antennas Propag. , 1965, AP-13:473-474. 被引量:1
  • 5Peng Wang, Yuguang Xu, Wei Wang et al., Analytic expression for Fresnel diffraction [J]. J, Opt. Soc. Am, , 1998, 15:684 -688. 被引量:1
  • 6J. P. Campbell, L. G. DeShazer. Near fields of truncated Gaussian apertures [J]. J, Opt. Soc, Am, , 1969, 59 ( 11):1427-1429. 被引量:1
  • 7G. O, Olaofe. Diffraction by Gaussian apertures[J]. J. Opt,Soc. Am., 1970, 60(12): 1654-1657. 被引量:1
  • 8R. G. Schell, G. Tyras. Irradiance from an aperture with a truncated Gaussian field distribution [J]. J. Opt. Soc. Am. ,1971, 61(1): 31-35. 被引量:1
  • 9G. Lenz. Far-field diffraction of truncated higher-order Laguerre-Gaussian beams[J]. Opt. Commun, , 1996, 123:423-429. 被引量:1
  • 10J. J. Wen, M. A. Breazeale. A diffraction beam field expressed as the superposition of Gaussian beams[J], J. Acoust. Soc.Am. , 1988, 83(5): 1752-1756. 被引量:1

共引文献16

同被引文献39

  • 1姬扬,张静娟,姚德成,陈岩松.用于半导体激光器光束整形的衍射光学元件的设计研究[J].物理学报,1996,45(12):2027-2034. 被引量:9
  • 2耿远超, 刘兰琴, 王文义, 张颖, 黄晚晴, 粟敬钦, 李平. 2013. 物理学报. 62 145201. 被引量:1
  • 3Walker E P, Milster T D 2001 Proc. SPIE 4443 73. 被引量:1
  • 4Dickey F M, Holswade S C, Shealy D L 2006 Laser Beam Shaping Applications (Boca Raton: CRC Press) pp182-208. 被引量:1
  • 5Rapp L, Constantinescu C, Larmande Y, Diallo A K, Videlot-Ackermann C, Delaporte P, Alloncle A P.2015.Sensor. Actuat. A: Phys. 224 111. 被引量:1
  • 6Mauclair C, Pietroy D, Maio Y D, Baubeau E, Colombier J P, Stoian R, Pigeon F.2015.Opt. Laser Eng. 67 212. 被引量:1
  • 7Frieden B R 1965 Appl. Opt. 4 1400. 被引量:1
  • 8Dickey F M, Holswade S C 2000 Laser Beam Shaping: Theory and Techniques (New York: Marcel Dekker Inc) pp1-4. 被引量:1
  • 9Mohammed W, Gu X J 2009 Appl. Opt. 48 2249. 被引量:1
  • 10Hoffnagle J A, Jefferson C M 2000 Appl. Opt. 39 5488. 被引量:1

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部