期刊文献+

基于压缩感知的双连续超松弛迭代算法研究

Successive Over-relaxation Iterative Dual Reconstruction Algorithm Based on Compressed Sensing
下载PDF
导出
摘要 压缩感知理论是在已知信号具有可压缩性或通过变换具有稀疏性的条件下,对其信号进行采集,稀疏和重构的新理论。其中稀疏信号重构算法是其中关键的一部分,对信号恢复的精确性及时效性验证有着重要的意义。该文在总结目前已有的重构算法的基础上,提出了一种新的基于压缩感知的双连续超松弛迭代重构算法。该算法通过参数估计自适应的寻找合适的稀疏度K的值来平衡重构精度和重构速度之间的矛盾。实验结果表明,这种算法能够有效地提高了重构图像的主观视觉效果和峰值信噪比,加快了压缩传感图像重构算法的收敛速度,提高了重构精度。因此是一种综合性能较好的压缩感知重构算法。 Compressed sensing(CS) theory is a novel data collection,sparse and reconstruction theory in the condition that signal is sparse or compressible.The sparse signal reconstruction algorithm is the key part in compressed sensing,and it is of great significance to verify the reconstruction accuracy and efficiency.This paper summarizes the current reconstruction algorithms,and then proposes a new double successive over-relaxation(DSOR).In order to strike a balance between the efficiency and accuracy,DSOR algorithm adapts parameter estimation to find the appropriate value of sparse level.The results of experiments show that proposed algorithm can effectively improve the subjective visual quality and peak signal-to-noise ratio,and accelerate the convergence of reconstruction algorithm.Thus,it is a better reconstruction algorithm in general.
作者 黄涛
出处 《杭州电子科技大学学报(自然科学版)》 2011年第6期79-82,共4页 Journal of Hangzhou Dianzi University:Natural Sciences
关键词 压缩感知 重构算法 稀疏信号重构 超松弛 compressed sensing reconstruction algorithm sparse signal reconstruction over-relaxation
  • 相关文献

参考文献11

  • 1杨帆,赵瑞珍,胡绍海.基于Contourlet系数相关特性的自适应图像去噪算法[J].光学学报,2009,29(2):357-361. 被引量:19
  • 2胡枫,于福溪.超松弛迭代法中松弛因子ω的选取方法[J].青海师范大学学报(自然科学版),2006,22(1):42-45. 被引量:11
  • 3Donoho D L.Compressed sensing. IEEE Transactions on Information Theory . 2006 被引量:1
  • 4Blumensath T.Iterative hard thresholding for compressed sensing. Comp Harmonic Anal . 2009 被引量:1
  • 5Herrity K K,Gilbert A C,Tropp J A.Sparse approximation via iterative thresholding. Proc.Int.Conf.Signal Process-ing,France . 2006 被引量:1
  • 6Figueiredo M A T,Nowak R D,Wright S J.Gradient projection for sparse reconstruction:application to compressed sens-ing and other inverse problems. Areas Signal Processing . 2001 被引量:1
  • 7Weisheng Dong,Lei Zhang.Nonlocal back-projection for adaptive image enlargement. Image Processing(ICIP) . 2009 被引量:1
  • 8Baraniuk R.Compressive sensing. IEEE Signal Processing Letters . 2007 被引量:1
  • 9Qiu K,Dogandzic A.Double overrelaxation thresholding methods for sparse signal reconstruction. Proc.44th Annu.Conf . 2010 被引量:1
  • 10T. T. Do,T. D. Trany,L. Gan.Fast compressive sampling with structurally random matrices. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing . 2008 被引量:1

二级参考文献9

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部