摘要
Based on the Aki-Richards approximate equations for reflection coefficients and Bayes theorem, we developed an inversion method to estimate P- and S-wave velocity contrasts and density contrast from combined PP and PS data. This method assumes that the parameters satisfy a normal distribution and introduces the covariance matrix to describe the degree of correlation between the parameters and thus to improve the inversion stability. Then, we suppose that the parameter sequence is subject to the Cauchy distribution and employs another matrix Q to describe the parameter sequence sparseness to improve the inversion result resolution. Tests on both synthetic and real multi-component data prove that this method is valid, efficient, more stable, and more accurate compared to methods using PP data only.
基于Aki-Richards公式和贝叶斯原理,本文发展了利用叠前PP波和PS波资料联合反演P波速度比、S波速度比和密度比的方法。该方法假设参数之间满足正态分布,引入参数协方差矩阵来描述反演参数之间的相关性以提高反演过程的稳定性,并同时使反演的参数序列服从Cauchy分布,引入矩阵Q来描述参数序列的稀疏性以提高反演结果的分辨率。采用本文提出的方法对模型数据和实际多波资料进行反演,结果表明:本文方法正确有效;与传统的单一PP波反演相比,PP波和PS波AVO联合反演具有稳定性更好和反演精度更高等优点。
基金
supported by the China Important National Science & Technology Specific Projects (Grant No. 2011ZX05019-008)
the National Natural Science Foundation of China (Grant No. 40839901)