期刊文献+

Study on algorithms of low SNR inversion of T_2 spectrum in NMR 被引量:3

低信噪比核磁共振T_2谱反演算法研究(英文)
下载PDF
导出
摘要 The method of regularization factor selection determines stability and accuracy of the regularization method. A formula of regularization factor was proposed by analyzing the relationship between the improved SVD and regularization method. The improved SVD algorithm and regularization method could adapt to low SNR. The regularization method is better than the improved SVD in the case that SNR is below 30 and the improved SVD is better than the regularization method when SNR is higher than 30. The regularization method with the regularization factor proposed in this paper can be better applied into low SNR (5〈SNR) NMR logging. The numerical simulations and real NMR data process results indicated that the improved SVD algorithm and regularization method could adapt to the low signal to noise ratio and reduce the amount of computation greatly. These algorithms can be applied in NMR logging. 正则化因子的选择方法决定了正则化方法的稳定性和准确度。在分析改进的奇异值分解法与正则化方法的关系的基础上,给出一个正则因子计算公式。数值模拟试验表明改进的奇异值分解法和正则化方法适应低信噪比。当信噪比低于30时正则化方法比奇异值分解法结果更好,当信噪比高于30时奇异值分解法更优。采用本文提出的正则因子的正则化方法可以适用于实际核磁测井的低信噪比(5<SNR)情况。数值模拟及实际资料的计算实验表明,改进的SVD反演算法与正则化方法都具有适应低信噪比、求解速度快等优点,可以满足核磁共振测井工作的需求。
出处 《Applied Geophysics》 SCIE CSCD 2011年第3期233-238,241,共7页 应用地球物理(英文版)
关键词 nuclear magnetic resonance T2 spectrum singular value decomposition regularization method 核磁共振 T2谱 奇异值分解 正则化方法
  • 相关文献

参考文献9

二级参考文献50

共引文献116

同被引文献110

引证文献3

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部