期刊文献+

一种全局优化的两阶段算法

A two-phase algorithm for global optimization
下载PDF
导出
摘要 为了提高算法的有效性,利用梯度算法和粒子群算法独立的运行机制,采用驱赶技术和重新初始化部分群体的技术,提出了一种基于梯度下降法和粒子群算法的两阶段优化算法,并对新算法进行了理论分析和数值仿真.数值结果显示新算法比单纯梯度算法有更好的全局优化能力,比单纯粒子群算法有更快的收敛速度和更高的精度.新算法求解质量更高,运行更稳定. To enhance effectiveness of algorithm, on the basis of analyzing the independent operating mecha- nism of both gradient algorithm and particle swarm algorithm, a two-phase optimization algorithm based on gradi- ent descent and particle swarm algorithm is presented; it adopts the driving technique and the re-initialization tech- nique of part of population. Then, the theoretical analysis and numerical simulation about the new algorithm are made. The numerical simulation shows this new algorithm has better global optimization ability than the gradient algorithm, and it has faster convergences speed and lighter solution accuracy than particle swarm algorithm. This new algorithm produces a lighter quality solution and has more stable operation.
出处 《河北大学学报(自然科学版)》 CAS 北大核心 2012年第2期207-211,共5页 Journal of Hebei University(Natural Science Edition)
基金 河北省软科学研究计划项目(11457250) 河北省自然科学基金资助项目(F2009000236)
关键词 全局优化 两阶段算法 梯度算法 粒子群算法 global optimization two-phase algorithm gradient algorithm particle swarm optimization
  • 相关文献

参考文献7

  • 1KENNEDY J,EBERHART R C.Particle swarm optimization[Z].Proceedings of IEEE International Conference on Neu-ral Networks,Perth Australia,1995. 被引量:1
  • 2ROY C P,SINGH Y P,CHANSARKAR R A.Hybridization of gradient descent algorithms with dynamic tunneling meth-ods for global optimization[J].IEEE T Syst Man Cy,2000,30(3):384-390. 被引量:1
  • 3NOEL M M,JANNETT T C.Simulation of a new hybrid particle swarm optimization algorithm[J].System Symposium,2004,32(4):150-153. 被引量:1
  • 4SUGANTHAN P N.Particle swarm optimiser with neighbourhood operator[Z].Proceedings of the IEEE Congress onEvolutionary Computation,Piscataway,NJ,1999. 被引量:1
  • 5PARSOPOULOS K E,VRAHATIS M N.On the computation of all global optimizers through particles warm optimization[J].IEEE Trans on Evolutionary Computation,2004,8(3):211-224. 被引量:1
  • 6刘星宝,蔡自兴,王勇,彭伟雄.用于全局优化问题的混合免疫进化算法[J].西安电子科技大学学报,2010,37(5):971-980. 被引量:7
  • 7陆克中,王汝传,章家顺.最优化问题全局寻优的PSO-BFGS混合算法[J].计算机应用研究,2007,24(5):17-19. 被引量:5

二级参考文献29

  • 1杜海峰,公茂果,刘若辰,焦李成.自适应混沌克隆进化规划算法[J].中国科学(E辑),2005,35(8):817-829. 被引量:28
  • 2刘丽珏,蔡自兴,陈虹.Immunity clone algorithm with particle swarm evolution[J].Journal of Central South University of Technology,2006,13(6):703-706. 被引量:2
  • 3公茂果,焦李成,杜海峰,马文萍.用于约束优化的人工免疫响应进化策略[J].计算机学报,2007,30(1):37-47. 被引量:16
  • 4Hunt J E,Cooke D E.An Adaptive,Distributed Learning System Based on Immune System[C] //IEEE International Conference on System,Man and Cybernetics:Vol 3.Vancouver:IEEE Press,1995:2494-2499. 被引量:1
  • 5De Castro L N,Von Zuben F J.The Clonal Selection Algorithm with Engineering Application[C] //Proc of the Genetic and Evolutionary Computation Conf on Workshop on Artificial Immune System and Their Applications.Las Vegas:Morgan Kaufmann Publishers,2000:36-37. 被引量:1
  • 6Bernardino H S.A New Hybrid AIS-GA for Constrained Optimization Problems in Mechanical Engineering[C] //2008 IEEE Congress on Evolutionary Computation:Vol 1-8.Hongkong:IEEE,2008:1455-1462. 被引量:1
  • 7Wang J,Zhang X H,Jiao L C.Integrated the Simplified Interpolation and Clonal Selection Into the Particle Swarm Optimization for Optimization Problems[C] //Simulated Evolution and Learning,Proceedings.Berlin:Springer,2006:433-440. 被引量:1
  • 8Dai H W.Quantum Interference Crossover-Based Clonal Selection Algorithm and Its Application to Traveling Salesman Problem[J].Ieice Trans on Information and Systems,2009,E92d(1):78-85. 被引量:1
  • 9Goncalves R A.A Cultural Immune System for Economic Load Dispatch with Non-smooth Cost[C] //Artificial Immune Systems,Proceedings.Berlin:Springer,2007:382-394. 被引量:1
  • 10Gao S.A Hybrid Clonal Selection Algorithm[J].International Journal of Innovative Computing Information and Control,2008,4(4):995-1008. 被引量:1

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部