期刊文献+

基于纹理复杂度的自适应分数阶微分算法 被引量:7

Adaptive Fractional Differential Algorithm Based on Texture Complexity
下载PDF
导出
摘要 图像分数阶微分算子具有较强的纹理细节信息增强能力,但最佳分数阶微分的阶数需要人为指定。为此,分析传统的分数盒维计算方法并对其进行改进,提出一种基于纹理复杂度的自适应分数阶微分算法。选择可以表示纹理细节复杂程度的分数维作为参数,自适应确定微分的阶数。实验结果表明,改进算法提取图像边缘的效果较好。 Fractional differential operator can enhance the high frequency signals of the image,while retaining the low frequency profile information,so it has a strong detail enhancement capability.But the best order of fractional differential needs to be specified by the researchers,affecting the actual application of the fractional differential.This paper analyzes the disadvantage of the algorithm and proposes the improved method.It chooses the fractal dimension,which can express the complexity of the detail of the texture,as a parameter adaptive to determine the order of differential.Experimental results show that the improved algorithm has better result in the edge extraction of the image.
出处 《计算机工程》 CAS CSCD 2012年第7期177-178,181,共3页 Computer Engineering
基金 国家自然科学基金资助项目(61004112) 中国博士后科学基金资助项目(20080430750)
关键词 分数阶微分 分数维 纹理复杂度 纹理增强 边缘提取 fractional differential fractal dimension texture complexity texture enhancement edge extraction
  • 相关文献

参考文献10

二级参考文献55

共引文献184

同被引文献47

  • 1蒲亦非.将分数阶微分演算引入数字图像处理[J].四川大学学报(工程科学版),2007,39(3):124-132. 被引量:63
  • 2蒲亦非,王卫星.数字图像的分数阶微分掩模及其数值运算规则[J].自动化学报,2007,33(11):1128-1135. 被引量:70
  • 3苑玮琦,李雪.一种边缘检测效果评价方法的研究[J].微计算机信息,2007,23(33):304-305. 被引量:6
  • 4Liu J, Chen S C, Tan X Y.Fractional order singular value decomposition representation for face recognition[J].Pat- tern Recognition,2007,41 ( 1 ) : 168-182. 被引量:1
  • 5Pu Y F, Zhou J L, Yuan X.Fractional differential mask: a fractional differential-based approach for multiscale texture enhancement[J].IEEE Trans on Image Processing, 2010, 19(2) :491-511. 被引量:1
  • 6Zhang J, Wei Z H.A class of fractional-order multi-scale variational models and alternating projection algorithm for image denoising[J].Applied Mathematical Modeling, 2011,35(5) :2516-2528. 被引量:1
  • 7Mathieu B,Melchior P,Outsaloup A,et al.Fractional dif- ferentiation for edge detection[J] .Signal Processing, 2003, 83( 11 ) : 2421-2432. 被引量:1
  • 8Pu Y F,Zhou J L.A novel approach for multi-scale tex- ture segmentation based on fractional differential[J].Inter- national Journal of Computer Mathematics, 2011,88 ( 1 ) : 58-78. 被引量:1
  • 9Gao C B,Zhou J L, Hu J R, et al.Edge detection of color image based on quatemion fractional differential[J]. lET Image Processing, 2011,5 (3) : 261-272. 被引量:1
  • 10Podlubny l.Fractional differential equations[M]//Mathe- matics in Science and Engineering.[S.1.]:Academic Press, 1999,198: 150-158. 被引量:1

引证文献7

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部